

Report no. 210416108GZU-004

TEST REPORT EN 50549-1:2019 Requirements for generating plants to be connected in parallel with distribution networks Part 1: Connection to a LV distribution network - Generating plants up to and including Type B				
Report Reference No	: 210416108GZU-004			
Date of issue	: 20 April 2019			
Total number of pages	: 111 pages			
	Intertek Testing Services Shenzhen Ltd			
Address	Room 02, & 101/E201/E301/E401/E50 8/F., No. 7-2. Caipin Road, Science City Guangdong, China	1/E601/E701/E801 of Room 01 1- y, GETDD, Guangzhou,		
Testing location/ address	Same as above			
Tested by (name +	Colin Huang			
signature):	Engineer	Colin Hung Dason Tu		
Approved by (+ signature)	Jason Fu	Jacob Fri		
	Supervisor	Jesen 100		
Applicant's name	Shenzhen SOFARSOLAR Co., Ltd.			
Address	401, Building 4, AnTongDa Industria Community, XinAn Street, BaoAn D	ll Park, District 68, XingDong istrict, Shenzhen, China		
Test specification:				
Standard	EN 50549-1: February 2019			
Test procedure	Type approval and with deviations acc network and interface protection for Ire	ording to the national Pland		
Non-standard test method	N/A			
Test Report Form No	EN 50549-1a			
Test Report Form(s) Originator	Intertek Guangzhou			
Master TRF	Dated 2019-05			
	ole or in part for non-commercial purposes as long takes no responsibility for and will not assume lial ue to its placement and context.			

Page 1 of 111

Page 2 of 111

Test item description	Solar Grid-tied Inverter
Trade Mark	SSFAR
Manufacturer	Same as Applicant
Model/Type reference	SOFAR 3.3KTLX-G3, SOFAR 4.4KTLX-G3, SOFAR 5KTLX-G3-A
	SOFAR 5.5KTLX-G3, SOFAR 6.6KTLX-G3, SOFAR 8.8KTLX-G3,
	SOFAR 8.8KTLX-G3-A, SOFAR 11KTLX-G3, SOFAR 10KTLX-G3-A
	SOFAR 11KTLX-G3-A, SOFAR 12KTLX-G3

Page 3 of 111

Ratings			1		1
	MODEL	SOFAR 3.3KTLX- G3	SOFAR 4.4KTLX- G3	SOFAR 5KTLX- G3-A	SOFAR 5.5KTLX- G3
	Max PV voltage		1100Vdc		
	MPPT Voltage range		140-10	00Vdc	
	Max. input current		15/15A		
	PV lsc		22.5/2	22.5A	
	Rated power(W)	3000	4000	5000	5000
	Max.apparent power (VA)	3300	4400	5000	5500
	Max output current	3×5.0 A	3×6.7 A	3×7.6 A	3×8.3 A
	Output voltage		3W/N/PE 23	0Vac/400Vac	
	Nominal Frequency		50	Hz	
	Power Factor		1 default (adju	ustable+/-0.8)	
	Ambient Temperature	- 30 °C - +60°C			
	Protection Degree	IP65			
	Protection Class	s Class I			
	Software Version		V000	0001	

Page 4 of 111

Ratings			I	Γ	1
	MODEL	SOFAR 6.6KTLX- G3	SOFAR 8.8KTLX- G3	SOFAR 8.8KTLX- G3-A	SOFAR 10KTLX- G3-A
	Max PV voltage		1100)Vdc	
	MPPT Voltage range		140-10	00Vdc	
	Max. input current	15/	15A	15/3	30A
	PV lsc	22.5/2	22.5A	22.5A/45A	
	Rated power(W)	6000	8000	8000	10000
	Max.apparent power (VA)	6600	8800	8800	10000
	Max output current	3×10.0 A	3×13.3 A	3×13.3 A	3×15.2 A
	Output voltage		3W/N/PE 23	0Vac/400Vac	
	Nominal Frequency		50	Hz	
	Power Factor		1 default (adj	ustable+/-0.8)	
	Ambient Temperature	-30 °C - +60 °C			
	Protection Degree				
	Protection Class				
	Software Version				

Page 5 of 111

Ratings				1
	MODEL	SOFAR 11KTLX-G3	SOFAR 11KTLX-G3-A	SOFAR 12KTLX-G3
	Max PV voltage		1100Vdc	
	MPPT Voltage range			
	Max. input current	15A/15A	15A/30A	
	PV lsc	22.5/22.5A	22.5A/45A	
	Rated power(W)	10000	10000	12000
	Max.apparent power (VA)	11000	11000	13200
	Max output current	3×16.7 A	3×16.7 A	3×20.0 A
	Output voltage	3W/	/N/PE 230Vac/400	Vac
	Nominal Frequency		50 Hz	
	Power Factor	1 de	fault (adjustable+/-	-0.8)
	Ambient Temperature		-30°C - +60°C IP65	
	Protection Degree			
	Protection Class		Class I	
	Software Version	n V000001		

Page 6 of 111

ests performed	d (name of test and test clause):	Testing location:
EN 50549-1	Test Description	Intertek Testing Services Shenzhen Ltd. Guangzhou
4.4.2	Operating frequency range	Branch
4.4.3	Minimal requirements for active power delivery at underfrequency	Room 02, & 101/E201/E301/E401/E501/E601/E701/E801 of Room 01 1-8/F., No. 7-2. Caipin Road, Science City, GETDD, Guangzhou, Guangdong, China
4.4.4	Continuous voltage operation range	
4.5.2	Rate of change of frequency (ROCOF)	
4.5.3	UVRT	
4.5.4	OVRT	
4.6.1	Power response to over frequency	
4.6.2	Power response to under frequency	
4.7.2.2	Q Capabilities (Power Factor) Q(U) Capabilities	
4.7.2.3.3	Q Control. Voltage related control mode	
4.7.2.3.4	Q Control Power related control modes	
4.7.3	Voltage control by active power	
4.7.4	Zero current mode	
4.9.3	Interface protection	
4.9.4.2	Islanding	
4.10.2	Reconnection after tripping	
4.10.3	Starting to generate electrical power	
4.11	Active power reduction by setpoint and Ceasing active power (Logic interface)	
4.13	Single fault tolerance of interface protection and interface switch	
,	he model SOFAR 12KTLX-G3 is /alid for other models, since the	

Page 7 of 111

Copy of marking plate	
SSEAR Sola	ar Grid-tied Inverter
	SOFAR 12KTLX-G3
Max.DC Input Voltage	1100V
Operating MPPT Voltage Ran	
Max. Input Current	
Max. PV lsc	22.5A/45A
Nominal Grid Voltage	
Max.Output Current	20A
Nominal Grid Frequency	
Nominal Output Power	
Max.Output Power	
Power Factor	
Ingress Protection	
Operating Temperature Rai	
Protective Class	Class_
Inverter Topology	
Overvoltage Category	
Manufacturer : Shenzhen SC Address : 401, Building 4, AnTong District 68, XingDong Community BaoAn District, Shenzhen, China VDE0126-1-1,VDE-AR-N4105,G IEC62116,UTE C15-712-1,AS477	gDa Industrial Park, /,XinAn Street, 99,IEC61727
	d. 🙆 \land 🗵
 Note: The above markings are the minimum requirement final production samples, the additional markings way be added. Label is attached on the side surface of enclosure a 	which do not give rise to misunderstanding

- 2. Label is attached on the side surface of enclosure and visible after installation
- 3. The other model labels are identical with label above, except the model name and rating.

Page 8 of 111

Report no. 210416108GZU-004

Test item particulars		
Temperature range		
AC Overvoltage category		VC IV
DC Overvoltage category		VC IV
IP protection class		
Possible test case verdicts:		
- test case does not apply to the test object::	N/A (Not applicable)	
- test object does meet the requirement:	P (Pass)	
- test object does not meet the requirement:	F (Fail)	
Testing		
Date of receipt of test item:	30 Mar 2021	
Date (s) of performance of tests:	30 Mar 2021 – 15 April 2021	
General remarks:		
The test results presented in this report relate only to th This report shall not be reproduced, except in full, without laboratory. "(see Enclosure #)" refers to additional information ap "(see appended table)" refers to a table appended to the	out the written approval of the Issuing testing pended to the report.	
When determining for test conclusion, measurement This report is for the exclusive use of Intertek's Client between Intertek and its Client. Intertek's responsib conditions of the agreement. Intertek assumes no li accordance with the agreement, for any loss, expend Only the Client is authorized to permit copying or d entirety. Any use of the Intertek name or one of its material, product or service must first be approved results in this report are relevant only to the sample material, product, or service is or has ever been und The test report and the approved to be revised only the	It and is provided pursuant to the agreement additional additional and the series and ability to any party, other than to the Client use or damage occasioned by the use of this istribution of this report and then only in its marks for the sale or advertisement of the ter in writing by Intertek. The observations and a tested. This report by itself does not imply der an Intertek certification program.	nt d in s report. ested l test that the

The test report only allows to be revised only within the report defined retention period unless standard or regulation was withdrawn or invalid.

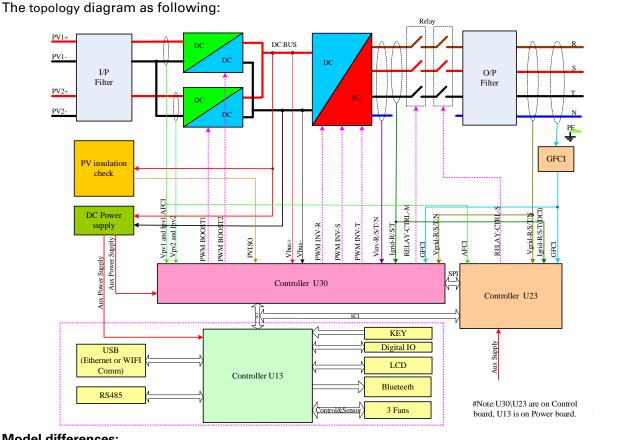
Throughout this report a point is used as the decimal separator.

Page 9 of 111

General product information:

intertek

Total Quality, Assured


The unit is a three-phase solar inverter, it can converts the high PV voltage to AC output.

The unit is providing EMI filtering at the PV. It does provide basic insulation separate from PV side to Grid.

The unit has two controllers. the master controller A monitor the PV statue; measure the PV voltage and current, bus voltage, AC voltage, current, GFCI and frequency.

The slave controller B monitor AC voltage, current, frequency, GFCI and communicate with the master controller A

The master controller A and controller B are used together to control relay open or close, if the single fault on one MCU, the other one MUC can be capable to open the relay, so that still providing safety means

Model differences:

All models have identical mechanical and electrical construction except some parameter of the software architecture to control the max output power. The detailed difference as following:

Model	SOFAR 3.3KTLX-G3 SOFAR 4.4KTLX-G3 SOFAR 5KTLX-G3-A SOFAR 5.5KTLX-G3	SOFAR 8.8KTLX-G3 SOFAR 11KTLX-G3	SOFAR 8.8KTLX-G3-A SOFAR 10KTLX-G3-A SOFAR 11KTLX-G3-A
	SOFAR 6.6KTLX-G3		SOFAR 12KTLX-G3
	2 strings MPPT		2 strings MPPT
PV input	MPPT1: one	e string input	MPPT1: one string input
	MPPT2: one	e string input	MPPT2: two strings input
Deast ICDT	MPPT1: IGBT	*1 40A/1200V	MPPT1: IGBT*1
Boost IGBT	MPPT2: IGBT	*1 40A/1200V	40A/1200V

Page 10 of 111

Report no. 210416108GZU-004

			MPPT2: IGBT*2 40A/1200V	
SIC diode		diode *1 5A*2 diode *1 5A*2	MPPT1: SIC diode *1 5A*2 MPPT2: SIC diode *1 10A*2	
Bus capacitor	110uF*2 550V	140uF ³	*2 550V	
Fan	No	Inside		
Heatsink	358*238*89	358*2	276*89	
Inductance	Boost inductance *2 720uH@13A/Inv inductance *3 550uH@9.6A	Boost inductance *2 720uH@13A/Inv inductance *3 410uH@15.8A	Boost1 inductance 720uH@13A//Boost2 inductance 289uH@26A/Inv inductance *3 365uH@19.2A	

Factory information:

Dongguan SOFAR SOLAR Co., Ltd.

1F-6F, Building E, No.1 JinQi Road, Bihu Industrial Park, Wulian Village, Fenggang Town, Dongguan City, China

nterface settings for Ireland				
Parameter	Clearance time	Trip setting		
	s			
Over-voltage	0,5	230 V + 10%		
Under-voltage	0,5	230 V - 10%		
Over-frequency	0,5	50 Hz + 1%		
Under-frequency	0,5	50 Hz - 4%		
An explicit Loss of Mains functionality shall be included. Established methods such as, but not limited to, Rate of Change of Frequency, Vector Shift or Source Impedance Measurement may be used. Where Source Impedance is measured, this shall be achieved by purely passive means, Any implementation which involves the injection of pulses onto the distribution network, shall not be permitted.				
ROCOF (where used)	0,5	0,4 Hz/s		
Vector Shift (where used)	0,5	6°		

Total Quality. Assured.

Page 11 of 111

Report no. 210416108GZU-004

EN 50549-1:2019

Clause Requirement - Test

Result - Remark

Verdict

4	Requirements on generating plants		Р
4.1	General	This report is only evaluated and tested for generating unit; The generating plant incorporated with the generating unit shall further consider this clause and sub- clause.	N/A
4.2	Connection scheme	Shall consider in final PGS	N/A
4.3	Choice of switchgear		Р
4.3.1	General Switches shall be chosen based on the characteristics of the power system in which they are intended to be installed. For this purpose, the short circuit current at the installation point shall be assessed, taking into account, <i>inter alia</i> , the short circuit current contribution of the generating plant.		Ρ
4.3.2	Interface switch Switches shall be power relays, contactors or mechanical circuit breakers each having a breaking and making capacity corresponding to the rated current of the generating plant and corresponding to the short circuit contribution of the generating plant. The short-time withstand current of the switching devices shall be coordinated with rated short circuit power at the point of connection. In case of loss of auxiliary supply power to the switchgear, a secure disconnection of the switch is required immediately. Where means of isolation (according to HD 60364-5- 551) is not required to be accessible to the DSO at all times, automatic disconnection with single fault tolerance according to 4.13 shall be provided. The function of the interface switch might be combined with either the main switch or the generating unit switch in a single switching device. In case of a combination, the single switching device shall be compliant to the requirements of both, the interface switch and the combined main switch or generating unit switch. As a consequence, at least two switches in series shall be proce.	The interface switch is constructed of redundancy, made up of two series relays and power and control separately. The EUT is a PV inverter, further evaluation refer to EN 62109–1 and EN 62109–2 with respect to the interface switch.	Ρ

4.4	Normal operating range	Р
4.4.1	General Generating plants when generating power shall have the capability to operate in the operating ranges specified below regardless of the topology and the settings of the interface protection.	Ρ

Total Quality. Assured.

Page 12 of 111

Report no. 210416108GZU-004

EN 50549-1:2019

EN 50549-1:2019			
Clause	Requirement - Test	Result - Remark	Verdict
4.4.2	Operating frequency range The generating plant shall be capable of operating continuously when the frequency at the point of connection stays within the range of 49 Hz to 51 Hz. In the frequency range from 47 Hz to 52 Hz the generating plant should be capable of operating until the interface protection trips. Therefore, the generating plant shall at least be capable of operating in the frequency ranges, for the duration and for the	(See appended table 4.4.2)	P
	minimum requirement as indicated in Table 1. Respecting the legal framework, it is possible that for some synchronous areas more stringent time periods and/or frequency ranges will be required by the DSO and the responsible party. Nevertheless, they are expected to be within the boundaries of the stringent requirement as indicated in Table 1 unless producer, DSO, TSO and responsible party agree on wider frequency ranges and longer durations.		
4.4.3	Minimal requirement for active power delivery at underfrequency A generating plant shall be resilient to the reduction of frequency at the point of connection while reducing the maximum active power as little as possible. The admissible active power reduction due to underfrequency is limited by the full line in Figure 5 and is characterized by a maximum allowed reduction rate of 10 % of P _{max} per 1 Hz for frequencies below 49,5 Hz. It is possible that a more stringent power reduction characteristic is required by the responsible party. Nevertheless this requirement is expected to be limited to an admissible active power reduction represented by the dotted line in Figure 5 which is characterised by a reduction rate of 2 % of the maximum power P _{max} per 1 Hz for frequencies below 49 Hz. If any technologies intrinsic design or ambient conditions have influence on the power reduction behaviour of the system, the manufacturer shall specify at which ambient conditions the requirements can be fulfilled and eventual limitations. The information can be provided in the format of a graph showing the intrinsic behaviour of the generating unit for example at different ambient conditions. The power reduction and the ambient conditions shall comply with the specification given by the responsible party. If the generating unit does not meet the power reduction at the specified ambient conditions, the producer and the responsible party	(See appended table 4.4.3)	Ρ

Clause

4.4.4

Page 13 of 111

Report no. 210416108GZU-004

EN 50549-1-2019

	EN 50549-1.2019		
Requirement - Test		Result - Remark	Verdict
	Continuous operating voltage range When generating power, the generating plant shall be capable of operating continuously when the voltage at the point of connection stays within the range of 85 % Un to 110 % Un. Beyond these values	(See appended table 4.4.4)	Ρ

	When generating power, the generating plant shall be capable of operating continuously when the voltage at the point of connection stays within the range of 85 % U _n to 110 % U _n . Beyond these values the under and over voltage ride through immunity limits as specified in clause 4.5.3 and 4.5.4 shall apply. In case of voltages below U _n , it is allowed to reduce the apparent power to maintain the current limits of the generating plant. The reduction shall be as small as technically feasible. For this requirement all phase to phase voltages and in case a neutral is connected, additionally all phase to neutral voltages shall be evaluated.		
4.5	Immunity to disturbances		Р
4.5.1	General In general, generating plants should contribute to overall power system stability by providing immunity towards dynamic voltage changes unless safety standards require a disconnection. The following clauses describe the required immunity for generating plants taking into account the connection technology of the generating modules. The following withstand capabilities shall be provided regardless of the settings of the interface protection.		Ρ
4.5.2	Rate of change of frequency (ROCOF) immunity ROCOF immunity of a power generating plant means that the generating modules in this plant stay connected with the distribution network and are able to operate when the frequency on the distribution network changes with a specified ROCOF. The generating units and all elements in the generating plant that might cause their disconnection or impact their behaviour shall have this same level of immunity. The generating modules in a generating plant shall have ROCOF immunity for a ROCOF equal or exceeding the value specified by the responsible party. If no ROCOF immunity value is specified, the following ROCOF immunity shall apply, making distinction between generating technologies: • Non-synchronous generating technology: at least 2 Hz/s • Synchronous generating technology: at least 1 Hz/s The ROCOF immunity is defined with a sliding measurement window of 500 ms.	(See appended table 4.5.2) For 2Hz/s	Ρ
4.5.3	Under-voltage ride through (UVRT)		Р

Page 14 of 111

Report no. 210416108GZU-004

EN 50549-1-2019

EN 50549-1:2019			
Clause	Requirement - Test	Result - Remark	Verdict
4.5.3.1	General Generating modules classified as type B modules according to COMMISSION REGULATION 2016/631 shall comply with the requirements of 4.5.3.2 and 4.5.3.3. Generating modules classified as type A and smaller according to COMMISSION REGULATION 2016/631 should comply with these requirements. The actual behaviour of type A modules and smaller shall be specified in the connection agreement. The requirements apply to all kinds of faults (1ph, 2ph and 3ph).		Ρ
4.5.3.2	Generating plant with non-synchronous generating technology Generating modules shall be capable of remaining connected to the distribution network as long as the voltage at the point of connection remains above the voltage time curve of Figure 6. The voltage is relative to U _n . The smallest phase to neutral voltage, or if no neutral is present, the smallest phase to phase voltage shall be evaluated. The responsible party may define a different UVRT characteristic. Nevertheless, this requirement is expected to be limited to the most stringent curve as indicated in Figure 6. This means that the whole generating module has to comply with the UVRT requirement. This includes all elements in a generating plant: the generating units and all elements that might cause their disconnection. For the generating unit, this requirement is considered to be fulfilled if it stays connected to the distribution grid as long as the voltage at its terminals remains above the defined voltage-time diagram. After the voltage returns to continuous operating voltage range, 90 % of pre-fault power or available power whichever is the smallest shall be resumed as fast as possible, but at the latest within 1 s unless the DSO and the responsible party requires another value.	(See appended table 4.5.3)	P
4.5.3.3	Generating plant with synchronous generating techn	ology	N/A

Page 15 of 111

	EN 50549-1:2019			
Clause	Requirement - Test	Result - Remark	Verdict	
4.5.4	Over-voltage ride through (OVRT) Generating modules, except for micro-generating plants, shall be capable of staying connected to the distribution network as long as the voltage at the point of connection remains below the voltage-time curve of Figure 8. The highest phase to neutral voltage or if no neutral is present the highest phase to phase voltage shall be evaluated. This means that not only the generating units shall comply with this OVRT requirement but also all elements in a generating plant that might cause its disconnection.	(See appended table 4.5.4)	P	
4.6	Active response to frequency deviation		Р	
4.6.1	 Power response to overfrequency Generating plants shall be capable of activating active power response to overfrequency at a programmable frequency threshold f1 at least between and including 50,2 Hz and 52 Hz with a programmable droop in a range of at least s=2 % to s=12 %. The droop reference is Pref. Unless defined differently by the responsible party: Pref=Pmax, in the case of synchronous generating technology and electrical energy storage systems. Pref=PM, the actual AC output power at the instant when the frequency reaches the threshold f1, in the case of all other non-synchronous generating technology The power value calculated according to the droop is a maximum power limit. If e.g. the available primary power decreases during a high frequency period below the power defined by the droop function, lower power values are permitted. The generating plant shall be capable of activating active power response to overfrequency as fast as technically feasible with an intrinsic dead time that shall be as short as possible with a maximum 30 s, unless another value is defined by the relevant party. An intentional delay shall be programmable to adjust the dead time to a value between the intrinsic dead time and 2 s. 	(See appended table 4.6.1)	P	

Page 16 of 111

Report no. 210416108GZU-004

EN 50549-1-2019

	EN 50549-1:2019			
Clause	Requirement - Test	Result - Remark	Verdict	
	After activation, the active power frequency response			
	shall use the actual frequency at any time, reacting to any frequency increase or decrease according to the programmed droop with an accuracy of \pm 10 % of the nominal power (see Figure 9). The		P	
	resolution of the frequency measurement shall be \pm 10 mHz or less. The accuracy is evaluated with a 1 min average value. At POC, loads if present in the producer's network might interfere with the response of the generating plant. The effect of loads			
	is not considered for the evaluation of the accuracy, only the behaviour of the generating plant is relevant.			
	Generating plants reaching their minimum regulating level shall, in the event of further frequency increase, maintain this power level constant unless the DSO and the responsible party requires to		P	
	disconnect the complete plant or if the plant consists of multiple units by disconnecting individual units. The active power frequency response is only deactivated if the frequency falls below the frequency			
	threshold f_1 . If required by the DSO and the responsible party an additional deactivation threshold frequency f_{stop}			
	shall be programmable in the range of at least 50 Hz to f_1 . If f_{stop} is configured to a frequency below f_1 there shall be no response according to the droop in			
	case of a frequency decrease (see Figure 10). The output power is kept constant until the frequency falls below f _{stop} for a configurable time t _{stop} .			
	If at the time of deactivation of the active power frequency response the momentary active power PM is below the available active power PA, the active power increase of the generating plant shall not exceed the gradient defined in 4.10.2.		P	
	Settings for the threshold frequency f ₁ , the droop and the intentional delay are provided by the DSO and the responsible party. If no settings are provided, the default settings in Table 2 should be applied.			
	The enabling and disabling of the function and its settings shall be field adjustable and means shall be provided to protect these from unpermitted interference (e.g. password or seal) if required by the DSO and the responsible party.	The enabling and disabling can be access by communication interface	Р	

Page 17 of 111

	EN 50549-1:2019			
Clause	Requirement - Test	Result - Remark	Verdict	
	 Alternatively for the droop function described above, the following procedure is allowed for generating modules if permitted by the DSO and the responsible party: the generating units shall disconnect at randomized frequencies, ideally uniformly distributed between the frequency threshold f1 and 52 Hz; in case the frequency decreases again, the generating unit shall start its reconnection procedure once the frequency falls below the specific frequency that initiated the disconnection; for this procedure, the connection conditions described in 4.10 do not apply; the randomization shall either be at unit level by changing the threshold over time, or on plant level by choosing different values for each unit within a plant, or on distribution system level if the DSO specifies a specific threshold for each plant or unit connected to its distribution system. 		P	
	EES units that are in charging mode at the time the frequency passes the threshold f₁ shall not reduce the charging power below PM until frequency returns below f₁. Storage units should increase the charging power according to the configured droop. In case the maximum charging capacity is reached or to prevent any other risk of injury or damage of equipment, a reduction of charging power is permitted.		N/A	
4.6.2	 Power response to underfrequency EES units shall be capable of activating active power response to underfrequency. Other generating units/plants should be capable of activating active power response to underfrequency. If active power to underfrequency is provided by a generating plant/unit, the function shall comply with the requirements below. Active power response to underfrequency shall be provided when all of the following conditions are met: when generating, the generating unit is operating at active power below its maximum active power Pmax; when generating, the generating unit is operating at active power below the available active power PA; the voltages at the point of connection of the generating plant are within the continuous operating with currents lower than its current limit. In the case of EES units, active power frequency response to underfrequency shall be provided in charging and generating mode. 	(See appended table 4.6.2)	P	

Total Quality. Assured.

Page 18 of 111

Report no. 210416108GZU-004

Ρ

EN 50549-1:2019 Clause Requirement - Test Result - Remark Verdict The active power response to underfrequency shall Ρ be delivered at a programmable frequency threshold f1 at least between and including 49,8 Hz and 46,0 Hz with a programmable droop in a range of at least 2 % to 12 %. The droop reference Pref is P_{max}. If the available primary power or a local set value increases during an underfrequency period above the power defined by the droop function, higher power values are permitted. The power value calculated according to the droop is therefore a minimum limit. The generating unit shall be capable of activating active power response to underfrequency as fast as technically feasible with an intrinsic dead time that shall be as short as possible with a maximum of 2 s and with a step response time of maximum 30 s unless another value is defined by the relevant party. An intentional initial delay shall be programmable to adjust the dead time to a value between the intrinsic dead time and 2 s. After activation, the active power frequency response Ρ shall use the actual frequency at any time, reacting to any frequency increase or decrease according to the programmed droop with an accuracy of ± 10 % of the nominal power. The accuracy is evaluated with a 1 min average value. The resolution of the frequency measurement shall be ± 10 mHz or less. At POC loads, if present in the producer's network, might interfere with the response of the generating plant. The effect of loads is not considered for the evaluation of the accuracy, only the behaviour of the generating plant is relevant. Generating modules reaching any of the conditions Ρ above during the provision of active power frequency response shall, in the event of further frequency decrease, maintain this power level constant. The active power frequency response is only deactivated if the frequency increases above the frequency threshold f1. Settings for the threshold frequency f₁, the droop and Ρ the intentional delay are defined by the DSO and the responsible party, if no settings are provided, the function shall be disabled. The activation and deactivation of the function and its Ρ settings shall be field adjustable and means shall be provided to protect these from unpermitted interference (e.g. password or seal) if required by the DSO and the responsible party.

Power response to voltage changes

4.7

Page 19 of 111

Report no. 210416108GZU-004

EN 50540 1:2010

	EN 50549-1:2019			
Clause	Requirement - Test	Result - Remark	Verdict	
4.7.1	General When the contribution to voltage support is required by the DSO and the responsible party, the generating plant shall be designed to have the capability of managing reactive and/or active power generation according to the requirements of this clause.		Р	
4.7.2	Voltage support by reactive power		Р	
4.7.2.1	General Generating plants shall not lead to voltage changes out of acceptable limits. These limits should be defined by national regulation. Generating units and plants shall be able to contribute to meet this requirement during normal network operation. Throughout the continuous operating frequency (see 4.4.2) and voltage (see 4.4.4) range, the generating plant shall be capable to deliver the requirements stipulated below. Outside these ranges, the generating plant shall follow the requirements as good as technically feasible although there is no specified accuracy required.		P	
4.7.2.2	Capabilities Unless specified differently below, for specific generating technologies, generating plants shall be able to operate with active factors as defined by the DSO and the responsible party from active factor = 0,90underexcited to active factor= 0,90overexcited The reactive power capability shall be evaluated at the terminals of the/each generating unit	(See appended table 4.7.2.2)	P	
	CHP generating units with a capacity ≤ 150 kVA shall be able to operate with active factors as defined by the DSO from $\cos \varphi = 0.95$ underexcited to $\cos \varphi = 0.95$ overexcited Generating units with an induction generator coupled directly to the grid and used in generating plants above micro generating level, shall be able to operate with active factors as defined by the DSO from $\cos \varphi = 0.95$ underexcited to $\cos \varphi = 1$ at the terminals of the unit. Deviating from 4.7.2.3 only the $\cos \varphi$ set point mode is required. Deviating from the accuracy requirements below, the accuracy is only required at active power P _D .		N/A	
	Generating units with an induction generator coupled directly to the grid and used in micro generating plants shall operate with an active factor above 0,95 at the terminals of the generating unit. A controlled voltage support by reactive power is not required from this technology.		N/A	

Page 20 of 111

Report no. 210416108GZU-004

EN 50549-1-2019

	EN 50549-1:2019			
Clause	Requirement - Test	Result - Remark	Verdict	
	Generating units with linear generators, coupled directly and synchronously to the grid shall operate with an active factor above 0,95 at the terminals of the generating unit, and therefore a controlled voltage support by reactive power is not required		N/A	
	from this technology. In case of different generating technologies with different requirements in one generating plant, each unit shall provide voltage support by reactive power as required for its specific technology. A compensation of one technology to reach the general plant requirement is not expected. The DSO and the responsible party may relax the above requirements. This relaxation might be general or specific for a certain generating plant or generating technology.		N/A	
	All involved parties can expect to have access to information documenting the actual choices regarding active power capabilities relative to reactive power requirements and related to the power rating in the operating voltage range (see further in this clause). A P-Q Diagram shall be included in the product documentation of a generating unit. When operating above the apparent power threshold S_{min} equal to 10 % of the maximum apparent power S_{max} or the minimum regulating level of the generating plant, whichever is the higher value, the reactive power capability shall be provided with an accuracy of ± 2 % S_{max} . Up to this apparent power threshold S_{min} , deviations above 2 % are permissible; nevertheless the accuracy shall always be as good as technically feasible and the exchange of uncontrolled reactive power in this low-power operation mode shall not exceed 10 % of the maximum apparent power S_{max} . At POC loads, if present in the producer's network might interfere with the response of the generating plant. The effect of loads is not considered for the evaluation of the accuracy, only the behaviour of the generating plant is relevant. For generating units with a reactive power capability according Figure 12 the reactive power capability at active power PD shall be at least according Figure 13. For generating units with a reduced reactive power capability Figure 13 is only applicable up to the maximum reactive power capability.	(See appended table 4.7.2.2)	P	
4.7.2.3	Control modes		Р	

Total Quality. Assured.

Page 21 of 111

Report no. 210416108GZU-004

EN 50540 1:2010

	EN 50549-1:2019				
Clause	Requirement - Test	Result - Remark	Verdict		
4.7.2.3.1	General Where required, the form of the contribution to voltage control shall be specified by the DSO. The control shall refer to the terminals of the generating units The generating plant/unit shall be capable of		Р		
	 operating in the control modes specified below within the limits specified in 4.7.2.2. The control modes are exclusive; only one mode may be active at a time. Q setpoint mode Q (U) Cos φ setpoint mode 				
	• Cos φ (P) For mass market products, it is recommended to implement all control modes. In case of site specific generating plant design, only the control modes required by the DSO need to be implemented. The configuration, activation and deactivation of the control modes shall be field adjustable. For field adjustable configurations and activation of the active control mode, means shall be provided to protect the settings from unpermitted interference (e.g. password or seal) if required by the DSO. Which control modes are available in a product and how they are configured shall be stated in the product documentation.				
4.7.2.3.2	Setpoint control modes Q setpoint mode and $\cos \varphi$ setpoint mode control the reactive power output and the $\cos \varphi$ of the output respectively, according to a set point set in the control of the generating plant/unit. In the case of change of the set point local or by remote control the settling time for the new set point shall be less than one minute.	(See appended table 4.7.2.2)	P		
4.7.2.3.3		Method 2 used	P		

Page 22 of 111

Report no. 210416108GZU-004

EN 50549-1-2019

	EN 50549-1:2019			
Clause	Requirement - Test	Result - Remark	Verdict	
	1			
	 For voltage related control modes, a characteristic with a minimum and maximum value and three connected lines according to Figure 16 shall be configurable. In addition to the characteristic, further parameters shall be configurable: The dynamics of the control shall correspond with a first order filter having a time constant that is configurable in the range of 3 s to 60 s. 	(See appended table 4.7.2.3.3)	Ρ	
	 To limit the reactive power at low active power two methods shall be configurable: a minimal cos φ shall be configurable in the range of 0-0,95; two active power levels shall be configurable both at least in the range of 0 % to 100 % of P_D. The lock-in value turns the Q(U) mode on, the lock-out value turns Q(U) off. If lock-in is larger than lock-out a hysteresis is given. See also Figure 14. The static accuracy shall be in accordance with 4.7.2.2. The dynamic accuracy shall be in accordance with Figure 15 with a maximum tolerance of +/- 5% of P_D plus a time delay of up to 3 seconds deviating from an ideal first order filter response. 		Ρ	
4.7.2.3.4		(See appended table 4.7.2.3.4)	Ρ	

Page 23 of 111

Report no. 210416108GZU-004

EN 50549-1:2019

	EN 50549-1:2019			
Clause	Requirement - Test	Result - Remark	Verdict	
		1		
4.7.3	Voltage related active power reduction In order to avoid disconnection due to overvoltage protection (see 4.9.2.3 and 4.9.2.4), generating plants/units are allowed to reduce active power output as a function of this rising voltage. The final implemented logic can be chosen by the manufacturer. Nevertheless, this logic shall not cause steps or oscillations in the output power. The power reduction caused by such a function may not be faster than an equivalent of a time constant tau = 3 s (= 33%/s at a 100% change). The enabling and disabling of the function shall be field adjustable and means have to be provided to protect the setting from unpermitted interference (e.g. password or seal) if required by the DSO.	This modem is chosen by manufacturer	Ρ	
4.7.4	Short circuit current requirements on generating plants		Р	
4.7.4.1	General The following clauses describe the required short circuit current contribution for generating plants taking into account the connection technology of the generating modules. Generating modules classified as type B modules according to COMMISSION REGULATION 2016/631 shall comply with the requirements of 4.7.4.2 and 4.7.4.3. Generating modules classified as type A according to COMMISSION REGULATION 2016/631 should comply with these requirements. The actual behaviour of type A modules shall be specified in the connection agreement.		Ρ	
4.7.4.2	Generating plant with non-synchronous generating t	technology	Р	
4.7.4.2.1	Voltage support during faults and voltage steps In general no voltage support during faults and voltage steps is required from generating plants connected in LV distribution networks as the additional reactive current is expected to interfere with grid protection equipment. If the responsible party requires voltage support during faults and voltage steps for generating plants of type B connected to LV distribution grids, the clause 4.7.4 of EN 50549-2 applies.	Only EN 50549-1 applies, if required by the responsible party for additional reactive current, the EN 50549-2 shall be applied.	Ρ	

Total Quality. Assured.

Page 24 of 111

Report no. 210416108GZU-004

EN 50549-1:2019

Clause	Requirement - Test	Result - Remark	Verdict
4.7.4.2.2	Zero current mode for converter connected generating technology If UVRT capability (see 4.5.3) is provided additional to the requirements of 4.5, generating units connected to the grid by a converter shall have the capability to reduce their current as fast as technically feasible down to or below 10 % of the rated current when the voltage is outside of a static voltage range. Generating units based on a doubly fed induction machine can only reduce the positive sequence current below 10 % of the rated current. Negative sequence current shall be tolerated during unbalanced faults. In case this current reduction is not sufficient, the DSO should choose suitable interface protection settings. The static voltage range shall be adjustable from 20 % to 100 % of Un for the undervoltage boundary and from 100 % to 130 % of Un for the overvoltage boundary. The default setting shall be 50% of Un for the undervoltage boundary and 120% of Un for the overvoltage boundary. Each phase to neutral voltage or if no neutral is present each phase to phase voltage range, 90% of pre-fault power or available power, whichever is the smallest, shall be resumed as fast as possible, but at the latest according to 4.5.3 and 4.5.4. All described settings are defined by the DSO and the responsible party. If no settings are provided, the function shall be disabled. The enabling and disabling and the settings shall be field adjustable and means have to be provided to protect these from unpermitted interference (e.g.	The test is performed together with the clause 4.5.3 and 4.5.4 Default setting for testing.	Ρ
4.7.4.2.3	password or seal) if required by the DSO.Induction generator based unitsIn general no voltage support during faults and voltage steps is required from generating plants connected in LV distribution networks as the additional reactive current is expected to interfere with grid protection equipment. If the responsible party requires voltage support during faults and voltage steps for generating plants of type B connected to LV distribution grids, the clause 4.7.4 of EN50549-2		N/A

Page 25 of 111

	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
4.7.4.3	Generating plant with synchronous generating technology - Synchronous generator based units In general no voltage support during faults and voltage steps is required from generating plants connected in LV distribution networks as the additional reactive current is expected to interfere with grid protection equipment. If the responsible party requires voltage support during faults and voltage steps for generating plants of type B connected to LV distribution grids, the clause 4.7.4 of EN50549-2 applies.		N/A
4.8	EMC and power quality Similar to any other apparatus or fixed installation, generating units shall comply with the requirements on electromagnetic compatibility established in Directive 2014/30/EU or 2014/53/EU, whichever applies. EMC limits and tests, described in EN 61000 series, have been traditionally developed for loads, without taking into account the particularities of generating units, such as their capability to create overvoltages or high frequency disturbances due to the presence of power converters, which were either impossible or less frequent in case of loads.	The units have declared to comply with Directive 2014/30/EU or 2014/53/EU	Ρ
4.9	Interface protection		Р

Total Quality. Assured.

Page 26 of 111

Report no. 210416108GZU-004

EN 50549-1:2019

Clause	Requirement - Test	Result - Remark	Verdict
	·		
4.9.1	 General According to HD 60364-5-551:2010, 551.7.4, means of automatic switching shall be provided to disconnect the generating plant from the distribution network in the event of loss of that supply or deviation of the voltage or frequency at the supply terminals from values declared for normal supply. This automatic means of disconnection has following main objectives: prevent the power production of the generating plant to cause an overvoltage situation in the distribution network it is connected to. Such overvoltages could result in damages to the equipment connected to the distribution network as well as the distribution network itself; detect unintentional island situations and disconnect the generating plant in this case. This is contributing to prevent damage to other equipment, both in the producers' installations and the distribution network due to out of phase re-closing and to allow for maintenance work after an intentional disconnection of a section of the distribution network; assist in bringing the distribution network to a controlled state in case of voltage or frequency deviation values. 		P

Total Quality. Assured.

Page 27 of 111

	EN 50549-1:2019				
Clause	Requirement - Test	Result - Remark	Verdict		
	 disconnect the generating plant from the distribution network in case of faults internal to the power generating plant. Protection against internal faults (short-circuits) shall be coordinated with network protection, according to DSO protection criteria. Protection against e.g. overload, electric shock and against fire hazards shall be implemented additionally according to HD 60364-1 and local requirements; prevent damages to the generating unit due to incidents (e.g. short circuits) on the distribution network Interface protections may contribute to preventing damage to the generating units due to out-of-phase reclosing of automatic reclosing which may happen after some hundreds of ms. However, in some countries some technologies of generating units are explicitly required to have an appropriate immunity level against the consequences of out-of-phase reclosing. The type of protection and the sensitivity and operating times depend upon the protection and the characteristics of the distribution network. A wide variety of approaches to achieve the above mentioned objectives is used throughout Europe. Besides the passive observation of voltage and frequency other active and passive methods are available and used to detect island situations. The requirements given in this clause are intended to provide the necessary functions for all known approaches as well as to give guidance in their use. Which functions are available in a product shall be stated in the product documentation. 		P		
	The interface protection system shall comply with the requirements of this European Standard, the available functions and configured settings shall comply with the requirements of the DSO and the responsible party. In any case, the settings defined shall be understood as the values for the interface protection system, i.e. where there is a wider technical capability of the generation module, it shall not be withheld by the settings of the protections (other than the interface protection). For micro generating plants, the interface protection system and the point of measurement might be integrated into the generating units. For generating plants with nominal current above 16 A the DSO may define a threshold above which the interface protection system shall be realized as a dedicated device and not integrated into the generating units.	Integrated into the generating units If specified by country requirement, the interface protection shall not be integrated	P		

Page 28 of 111

Report no. 210416108GZU-004

EN 50540 1:2010

	EN 50549-1:2019				
Clause	Requirement - Test	Result - Remark	Verdict		
	 to place the protection system as close to the point of connection as possible, to avoid tripping due to overvoltages resulting from the voltage rise within the producer's network; to allow for periodic field tests. In some countries periodic field tests are not required if the protection system meets the requirements of single fault safety. The interface protection relay acts on the interface switch. The DSO may require that the interface protection relay acts additionally on another switch with a proper delay in case the interface switch fails to operate. In case of failure of the power supply of the interface protection, the interface protection shall trigger the interface switch without delay. An uninterruptible power supply may be required by the DSO, for instance in case of UVRT capability, delay in protection etc. In case of field adjustable settings of threshold and operation time, means shall be provided to protect the settings from unpermitted interference (e.g. password or seal) if required by the DSO. 		P		
4.9.2	Void				
4.9.3	Requirements on voltage and frequency protection	(See appended table 4.9.3)	P		
4.9.3.1	GeneralPart or all of the following described functions may berequired by the DSO and the responsible party.The protection functions shall evaluate at least allphases where generating units, covered by thisprotection system, are connected to.In case of three phase generating units/plants and inall cases when the protection system isimplemented as an external protection system in athree phase power supply system, all phase tophase voltages and, if a neutral conductor is present,all phase to neutral voltages shall be evaluated.The frequency shall be evaluated on at least one ofthe voltages.		P		

Page 29 of 111

Report no. 210416108GZU-004

EN 50540 1.2010

EN 50549-1:2019				
Clause	Requirement - Test	Result - Remark	Verdic	
	If multiple signals (e.g. 3 phase to phase voltages) are to be evaluated by one protection function, this function shall evaluate all of the signals separately. The output of each evaluation shall be OR connected, so that if one signal passes the threshold of a function, the function shall trip the protection in the specified time. The minimum required accuracy for protection is: • for frequency measurement ± 0,05 Hz; • for voltage measurement ± 1 % of Un. • The reset time shall be ≤50ms • The interface protection relay shall not conduct continuous starting and disengaging operations of the interface protection relay. Therefore a reasonable reset ratio shall be implemented which shall not be zero but be below 2% of nominal value for voltage and below 0,2Hz for frequency.		P	
4.9.3.2	Undervoltage protection [27]The protection shall comply with EN 60255-127. The evaluation of the r.m.s. or the fundamental value is allowed.Undervoltage protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows.Undervoltage threshold stage 1 [27 <]:		P	

Page 30 of 111

Report no. 210416108GZU-004

EN 50549-1-2019

	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
4.9.3.3	Overvoltage protection [59] The protection shall comply with EN 60255-127. The evaluation of the r.m.s. or the fundamental value is allowed. Overvoltage protection may be implemented with two completely independent protection thresholds,		Ρ
	 each one able to be activated or not. The standard adjustment ranges are as follows. Overvoltage threshold stage 1 [59 >]: Threshold (1,0 - 1,2) U_n adjustable by steps of 0,01 U_n Operate time (0,1 - 100) s adjustable in steps of 0,1 s Overvoltage threshold stage 2 [59 >]: 		
	• Threshold $(1,0 - 1,30)$ U_n adjustable by steps of 0,01 U_n • Operate time $(0,1 - 5)$ s adjustable in steps of 0,05 s		
4.9.3.4	Overvoltage 10 min mean protectionThe calculation of the 10 min value shall comply with the 10 min aggregation of EN 61000-4-30 Class S, but deviating from EN 61000-4-30 as a moving window is used. Therefore the function shall be based on the calculation of the square root of the arithmetic mean of the squared input values over 10 min. The calculation of a new 10 min value at least every 3 s is sufficient, which is then to be compared with the threshold value.• Threshold $(1,0 - 1,15)$ U_n adjustable by steps of $0,01$ U_n • Start time ≤ 3s not adjustable		Ρ
	Time delay setting = 0 ms		

Page 31 of 111

Report no. 210416108GZU-004

EN 50549-1:2019

- Romark	Verdict

Clause	Requirement - Test	Result - Remark	Verdict
4.9.3.5	Underfrequency protection [81 <] Underfrequency protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows.		Р
	Underfrequency threshold stage 1 [81 <]: • Threshold (47,0 – 50,0) Hz adjustment by steps of 0,1 Hz • Operate time (0,1 – 100) s adjustable in steps of 0,1 s		
	Underfrequency threshold stage 2 [81 < <]: • Threshold (47,0 – 50,0) Hz adjustment by steps of 0,1 Hz • Operate time (0,1 – 5) s adjustable in steps of 0,05 s		
	In order to use narrow frequency thresholds for islanding detection (see 4.9.3.3) it may be required to have the ability to activate and deactivate a stage by an external signal. The frequency protection shall function correctly in the input voltage range between 20 % U_n and 120 % U_n and shall be inhibited for input voltages of less than 20 % U_n .		
	Under 0,2 Un the frequency protection is inhibited. Disconnection may only happen based on undervoltage protection.		
4.9.3.6	Overfrequency protection [81 >]Overfrequency protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows. Overfrequency threshold stage 1 [81 >]:• Threshold (50,0 - 52,0) Hz adjustment by steps of 0,1 Hz • Operate time (0,1 – 100) s adjustable in steps of 0,1 s		Ρ
	Overfrequency threshold stage 2 [81 > >]: • Threshold (50,0 - 52,0) Hz adjustment by steps of 0,1 Hz • Operate time (0,1 - 5) s adjustable in steps of 0,05 s In order to use narrow frequency thresholds for islanding detection (see4.9.3.3) it may be required to have the ability to activate and deactivate a stage by an external signal. The frequency protection shall function correctly in the input voltage range between 20 % U_n and 120 % U_n and shall be inhibited for input voltages of		
4.9.4	less than 20 % Un. Means to detect island situation		Р

Total Quality. Assured.

Page 32 of 111

Report no. 210416108GZU-004

EN 50540 1:2010

EN 50549-1:2019				
Clause	Requirement - Test	Result - Remark	Verdict	
4.9.4.1	General sides the passive observation of voltage and frequency further means to detect an island may be required by the DSO. Detecting islanding situations shall not be contradictory to the immunity requirements of 4.5. Commonly used functions include: • Active methods tested with a resonant circuit; • ROCOF tripping; • Switch to narrow frequency band; • Vector shift • Transfer trip. Only some of the methods above rely on standards. Namely for ROCOF tripping and for the detection of a vector shift, also called a vector jump, currently no European Standard is available.		P	
4.9.4.2	Active methods tested with a resonant circuit These are methods which pass the resonant circuit test for PV inverters according to EN 62116.	(See appended table 4.9.4.2)	Р	
4.9.4.3	Switch to narrow frequency band (see Annex E and Annex F) In case of local phenomena (e.g. a fault or the opening of circuit breaker along the line) the DSO in coordination with the responsible party may require a switch to a narrow frequency band to increase the interface protection relay sensitivity. In the event of a local fault it is possible to enable activation of the restrictive frequency window (using the two underfrequency/overfrequency thresholds described in 4.9.2.5 and 4.9.2.6) correlating its activation with another additional protection function. If required by the DSO, a digital input according to 4.9.4 shall be available to allow the DSO the activation of a restrictive frequency window by communication.		Ρ	
4.9.5	Digital input to the interface protection If required by the DSO, the interface protection shall have at least two configurable digital inputs. These inputs can for example be used to allow transfer trip or the switching to the narrow frequency band.		P	
4.10	Connection and starting to generate electrical pow	ver	Р	

Page 33 of 111

Report no. 210416108GZU-004

EN 50540 1:2010

	EN 50549-1:2019			
Clause	Requirement - Test	Result - Remark	Verdict	
4.10.1	GeneralConnection and starting to generate electrical poweris only allowed after voltage and frequency arewithin the allowed voltage and frequency ranges forat least the specified observation time. It shall notbe possible to overrule these conditions.Within these voltage and frequency ranges, thegenerating plant shall be capable of connecting andstarting to generate electrical power.The setting of the conditions depends on whether theconnection is due to a normal operational startupor an automatic reconnection after tripping of theinterface protection. In case the settings forautomatic reconnection after tripping and starting togenerate power are not distinct in a generatingplant, the tighter range and the start-up gradient shallbe used.The frequency range, the voltage range, theobservation time and the power gradient shall be fieldadjustable.For field adjustable settings, means shall be providedto protect the settings from unpermittedinterference (e.g. password or seal) if required by theDSO.		P	
4.10.2	Automatic reconnection after tripping The frequency range, the voltage range, the observation time shall be adjustable in the range according to Table 3 column 2. If no settings are specified by the DSO and the responsible party, the default settings for the reconnection after tripping of the interface protection are according to Table 3 column 3. After reconnection, the active power generated by the generating plant shall not exceed a specified gradient expressed as a percentage of the active nominal power of the unit per minute. If no gradient is specified by the DSO and the responsible party, the default setting is 10 % P_n /min. Generating modules for which it is technically not feasible to increase the power respecting the specified gradient over the full power range may connect after 1 min to 10 min (randomized value, uniformly distributed) or later.	(See appended table 4.10.2)	P	

Page 34 of 111

Report no. 210416108GZU-004

EN 50549-1-2019

EN 50549-1:2019			
Clause	Requirement - Test	Result - Remark	Verdict
4.10.3	Starting to generate electrical powerThe frequency range, the voltage range, the observation time shall be adjustable in the range according to Table 4 column 2. If no settings are specified by the DSO and the responsible party, the default settings for connection or starting to generate electrical power due to normal operational startup or activity are according to Table 4 column 3.If applicable, the power gradient shall not exceed the maximum gradient specified by the DSO and the responsible party. Heat driven CHP generating units do not need to keep a maximum gradient, since the start up is randomized by the nature of the heat demand.For manual operations performed on site (e.g. for the purpose of initial start-up or maintenance) it is permitted to deviate from the observation time and responsible to a start operation time and	(See appended table 4.10.3) Default settings are applied	Ρ
4.10.4	ramp rate. Synchronization Synchronizing a generating plant/unit with the distribution network shall be fully automatic i.e. it shall not be possible to manually close the switch between the two systems to carry out synchronization.		Р
4.11	Ceasing and reduction of active power on set poin	t	Р
4.11.1	Ceasing active power Generating plants with a maximum capacity of 0,8 kW or more shall be equipped with a logic interface (input port) in order to cease active power output within five seconds following an instruction being received at the input port. If required by the DSO and the responsible party, this includes remote operation.	(See appended table 4.11)	Ρ
4.11.2	Reduction of active power on set pointFor generating modules of type B, a generating plantshall be capable of reducing its active power to alimit value provided remotely by the DSO. The limitvalue shall be adjustable in the complete operatingrange from the maximum active power to minimumregulating level.The adjustment of the limit value shall be possiblewith a maximum increment of 10% of nominalpower.A generation unit/plant shall be capable of carryingout the power output reduction to the respectivelimit within an envelope of not faster than 0,66 % Pn/s and not slower than 0,33 % Pn/ s with anaccuracy of 5 % of nominal power. Generating plantsare permitted to disconnect from the network ata limit value below it minimum regulating level. Ifrequired by the DSO, this includes remote operation.	(See appended table 4.11)	Ρ

Total Quality. Assured.

Page 35 of 111

Report no. 210416108GZU-004

EN 50540 1.2010

EN 50549-1:2019				
Clause Requirement - Test	Result - Remark	Verdic		
Pemote information exchange				
Remote information exchange Generating plants whose power is above a threshold to be determined by the DSO and the responsible party shall have the capacity to be monitored by the DSO or TSO control centre or control centres as well as receive operation parameter settings for the functions specified in this European Standard from the DSO or TSO control centre or control centres. This information exchange is aimed at allowing the DSO and/or the TSO to improve, optimize and make safer the operation of their respective networks. The remote monitoring and operation parameter settings system that may be used by the DSO is not aimed at replacing the manual and automatic control means implemented by the generating plant operator to control the operation of the generating plant. It should not interact directly with the power generation equipment and the switching devices of the generating plant. It should interact with the operation and control system of the generating plant. In principle, standardized communication should be used. It is recommended that in case of using protocols for signal transmission used between the DSO or TSO control centre or control centres and the generating plant, relevant technical standards (e.g. EN 60870-5-101, EN 60870-5-104, EN 61850- and in particular EN 61850-7-4, EN 61850-7-420, IEC/TR 61850-90-7, as well as EN 61400-25 for wind turbines and relevant parts of IEC 62351 for relevant security measures) are recognized. Alternative protocols can be agreed between the DSO and the producer. These protocols include hardwired digital input/output and analogue input/output provided locally by DSO. The information needed for remote monitoring and the setting of configurable parameters are specific to each distribution network and to the way it is operated. Signal transmission times between the DSO and/or the TSO control centre and the generating plant will depend on the means of transmission used between the DSO and/or TSO control centre and the generating plant.	n	N/A		

Total Quality. Assured.

Page 36 of 111

Report no. 210416108GZU-004

EN 50549-1:2019 Clause Requirement - Test Result - Remark Verdict Requirements regarding single fault tolerance of 4.13 Ρ (See appended table 4.13) interface protection system and interface switch If required in 4.3.2, the interface protection system and the interface switch shall meet the requirements of single fault tolerance. A single fault shall not lead to a loss of the safety functions. Faults of common cause shall be taken into account if the probability for the occurrence of such a fault is significant. Whenever reasonably practical, the individual fault shall be displayed and lead to the disconnection of the power generating unit or system. Series-connected switches shall each have a independent breaking capacity corresponding to the rated current of the generating unit and corresponding to the short circuit contribution of the generating unit. The short-time withstand current of the switching devices shall be coordinated with maximum short circuit power at the connection point. At least one of the switches shall be a switchdisconnector suitable for overvoltage category 2. For single-phase generating units, the switch shall have one contact of this overvoltage category for both the neutral conductor and the line conductor. For poly-phase generating units, it is required to have one contact of this overvoltage category for all active conductors. The second switch may be formed of electronic switching components from an inverter bridge or another circuit provided that the electronic switching components can be switched off by control signals and that it is ensured that a failure is detected and leads to prevention of the operation at the latest at the next reconnection. For PV-inverters without simple separation between the network and the PV generating unit (e.g. PV Inverter without transformer) both switches mentioned in the paragraph above shall be switchdisconnectors with the requirements described therein, although one switching device is permitted to be located between PV array and PV inverter. Interconnection guidance Annex A Info Annex B Void Info Annex C **Parameter Table** Info Annex D List of national requirements applicable for generating plants Info Annex E Loss of Mains and overall power system security Info Annex F Examples of protection strategies Info

Requirement - Test

Total Quality. Assured.

Clause

Page 37 of 111

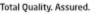
Report no. 210416108GZU-004

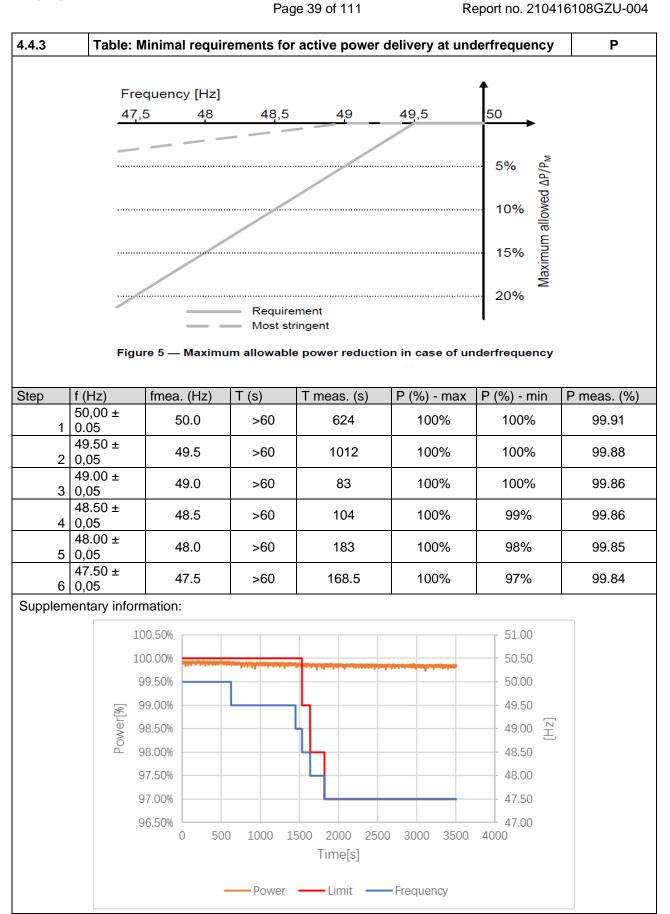
Verdict

EN 50549-1:2019

50545-1.2015

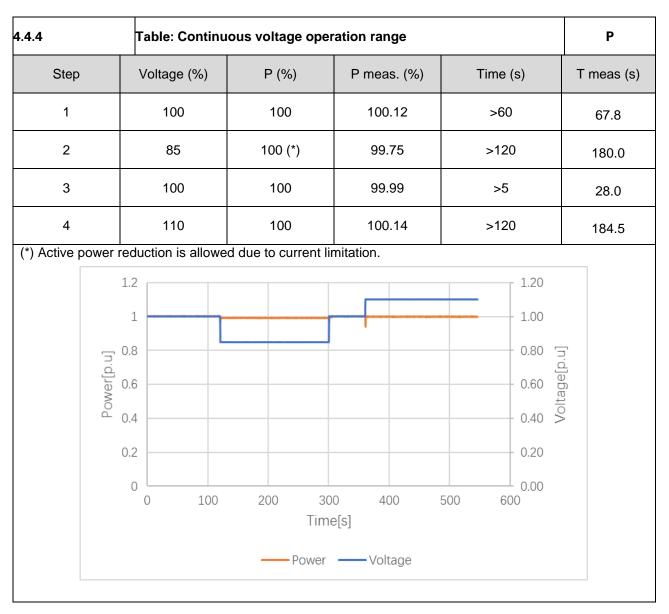
Result - Remark


Annex G	Abbreviations	Info
Annex H	Relationship between this European standard and the COMMISSION REGULATION (EU) 2016/631	Info



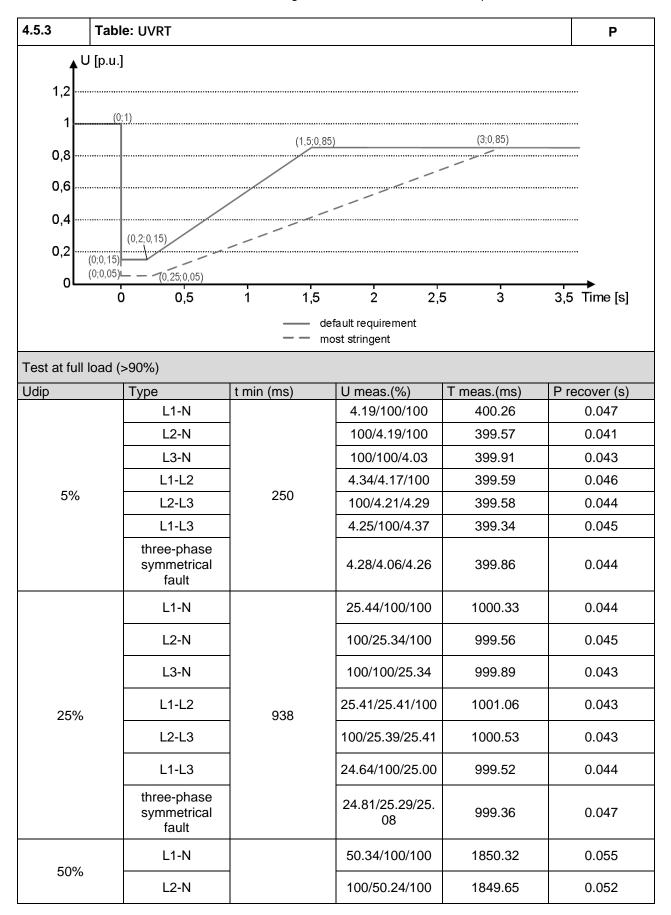
Page 38 of 111

Appended Table - Testing Result


Frequency R 47,0 Hz – 47	ange		e period for op	peration	Tim	ne period	for
	anue	IVII	nimum require	Minimum requirement			ent
47,0 Hz – 47,						equiremen	
47.5.1. 40	-			a		20 s	
	-						
				4			
pecting the legal	framework, it	is poss	-		are require		evant
ity in some sync	hronous areas	s. '					
f (Hz)	f (Hz) Measu	ured	Time	Time me	asured	Comment	S
47 Hz	47.0		>20 s	7	0s		
47.5 Hz	47.5		>90 min	110			onditions: >90 min
48.5 Hz	48.5		>90 min	11()min		onditions: >90 min
52 Hz	52.0		>15 min	20	min		
50 Hz	50.0		> 1 min	2r	nin		
51.5 Hz	51.5		>90 min				onditions: >90 min
12000.0 10000.0 8000.0 6000.0 4000.0 2000.0			Time[s]			52.00 51.00 50.00 49.00 48.00 47.00 46.00	
	48,5 Hz - 49 $49,0 Hz - 51$ $51,0 Hz - 51$ $51,5 Hz - 52$ pecting the legal ity in some synce f (Hz) 47 Hz 47.5 Hz 48.5 Hz 52 Hz 50 Hz 51.5 Hz 14000,0 10000,0 8000,0 4000,0 2000,0	f (Hz) f (Hz) Measu 47 Hz 47.0 47 Hz 47.0 47.5 Hz 47.5 48.5 Hz 48.5 52 Hz 52.0 50 Hz 50.0 51.5 Hz 51.5 14000.00 12000.00 8000.00 6000.00 4000.00 0.00	48,5 Hz - 49,0 Hz $49,0 Hz - 51,0 Hz$ $51,0 Hz - 51,5 Hz$ $51,5 Hz - 52,0 Hz$ Decting the legal framework, it is possibly in some synchronous areas. $f(Hz) f(Hz) Measured$ $47 Hz 47.0$ $47.5 Hz 47.5$ $48.5 Hz 48.5$ $52 Hz 52.0$ $50 Hz 50.0$ $51.5 Hz 51.5$ 14000.00 12000.00 12000.00 6000.00 4000.00 0.00 0.00 0.00 0.00 0.00	48,5 Hz - 49,0 Hz 30 min a 49,0 Hz - 51,0 Hz Unlimited 51,0 Hz - 51,5 Hz 30 min a 51,5 Hz - 52,0 Hz not required becting the legal framework, it is possible that longer tilty in some synchronous areas. Time f (Hz) f (Hz) Measured Time 47.5 Hz 47.0 >20 s 47.5 Hz 47.5 >90 min 48.5 Hz 48.5 >90 min 52 Hz 52.0 >15 min 50 Hz 50.0 > 1 min 51.5 Hz 51.5 >90 min 200.00 000.00 000.00 000.00 2000.00 0.00 5000 10000 0.00 5000 10000 1500	48,5 Hz - 49,0 Hz 30 min a 49,0 Hz - 51,0 Hz Unlimited 51,0 Hz - 51,5 Hz 30 min a 51,5 Hz - 52,0 Hz not required becting the legal framework, it is possible that longer time periods ity in some synchronous areas. Time Time mean f (Hz) f (Hz) Measured Time Time mean 47 Hz 47.0 >20 s 7 47.5 Hz 47.5 >90 min 110 48.5 Hz 48.5 >90 min 110 48.5 Hz 50.0 > 1 min 20 50 Hz 50.0 > 1 min 20 50 Hz 51.5 >90 min 110 50 Hz 50.0 > 1 min 20 50 Hz 50.0 > 1 min 20 50 Hz 50.0 > 1 min 20 6000.00 8000.00 90 min 110 14000.00 90 min 100 90 min 100 0 0 5000 10000 10000.00 10000.00 0 5000 10000 1500 2000 <td>48,5 Hz - 49,0 Hz 30 min a 49,0 Hz - 51,0 Hz Unlimited 51,0 Hz - 51,5 Hz 30 min a 51,5 Hz - 52,0 Hz not required bectling the legal framework, it is possible that longer time periods are required ty in some synchronous areas. f (Hz) f (Hz) Measured Time Time measured 47.5 Hz 47.0 >20 s 70s 47.5 Hz 47.5 >90 min 110min 48.5 Hz 48.5 >90 min 110min 52 Hz 52.0 >15 min 20min 50 Hz 51.5 >90 min 110min 51.5 Hz 51.5 >90 min 110min 51.5 Hz 51.5 >90 min 110min 51.5 Hz 51.5 >90 min 100min 50.00 0.00 0.00 2000.00 2000.00 0.00 0.00 0.00 2000.00 2000.00 0.00 0.00 0.00 10000 10000 2000 2500</td> <td>48,5 Hz - 49,0 Hz 30 min a 90 min a 49,0 Hz - 51,0 Hz Unlimited Unlimited Unlimited 51,0 Hz - 51,5 Hz 30 min a 90 min 51,5 Hz - 52,0 Hz not required 15 min pecting the legal framework, it is possible that longer time periods are required by the reletive in some synchronous areas. Time measured Comment 47.5 Hz 47.0 >20 s 70s severe co 48.5 Hz 48.5 >90 min 110min severe co 48.5 Hz 48.5 >90 min 110min severe co 48.5 Hz 50.0 >1 min 20min 50.0 51.0 min 50 Hz 50.0 >1 min 20min 53.00 50.0 14000.00 50.00 1 min 20min 50.00 60.00</td>	48,5 Hz - 49,0 Hz 30 min a 49,0 Hz - 51,0 Hz Unlimited 51,0 Hz - 51,5 Hz 30 min a 51,5 Hz - 52,0 Hz not required bectling the legal framework, it is possible that longer time periods are required ty in some synchronous areas. f (Hz) f (Hz) Measured Time Time measured 47.5 Hz 47.0 >20 s 70s 47.5 Hz 47.5 >90 min 110min 48.5 Hz 48.5 >90 min 110min 52 Hz 52.0 >15 min 20min 50 Hz 51.5 >90 min 110min 51.5 Hz 51.5 >90 min 110min 51.5 Hz 51.5 >90 min 110min 51.5 Hz 51.5 >90 min 100min 50.00 0.00 0.00 2000.00 2000.00 0.00 0.00 0.00 2000.00 2000.00 0.00 0.00 0.00 10000 10000 2000 2500	48,5 Hz - 49,0 Hz 30 min a 90 min a 49,0 Hz - 51,0 Hz Unlimited Unlimited Unlimited 51,0 Hz - 51,5 Hz 30 min a 90 min 51,5 Hz - 52,0 Hz not required 15 min pecting the legal framework, it is possible that longer time periods are required by the reletive in some synchronous areas. Time measured Comment 47.5 Hz 47.0 >20 s 70s severe co 48.5 Hz 48.5 >90 min 110min severe co 48.5 Hz 48.5 >90 min 110min severe co 48.5 Hz 50.0 >1 min 20min 50.0 51.0 min 50 Hz 50.0 >1 min 20min 53.00 50.0 14000.00 50.00 1 min 20min 50.00 60.00

Total Quality. Assured.

```
Page 40 of 111
```



intertek Total Quality. Assured.

Page 41 of 111

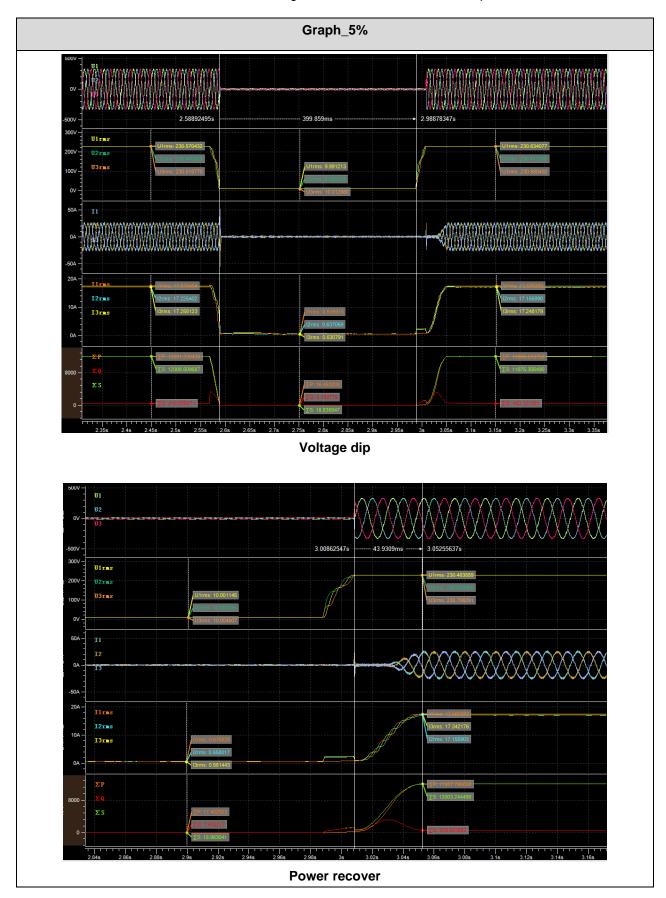
Total Quality. Assured.

Page 42 of 111

intertek Total Quality. Assured.

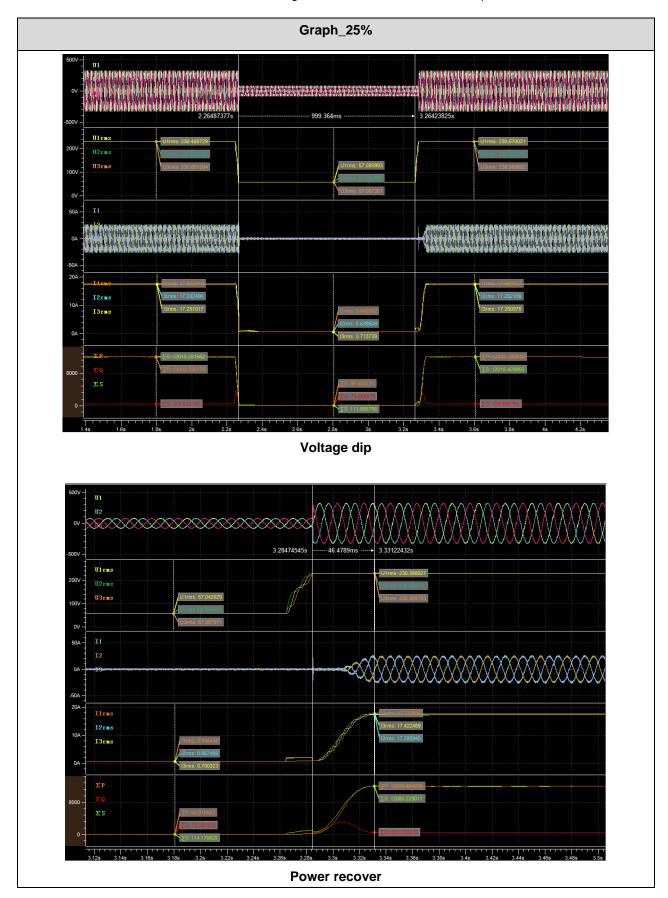
Page 43 of 111

Report no. 210416108GZU-004

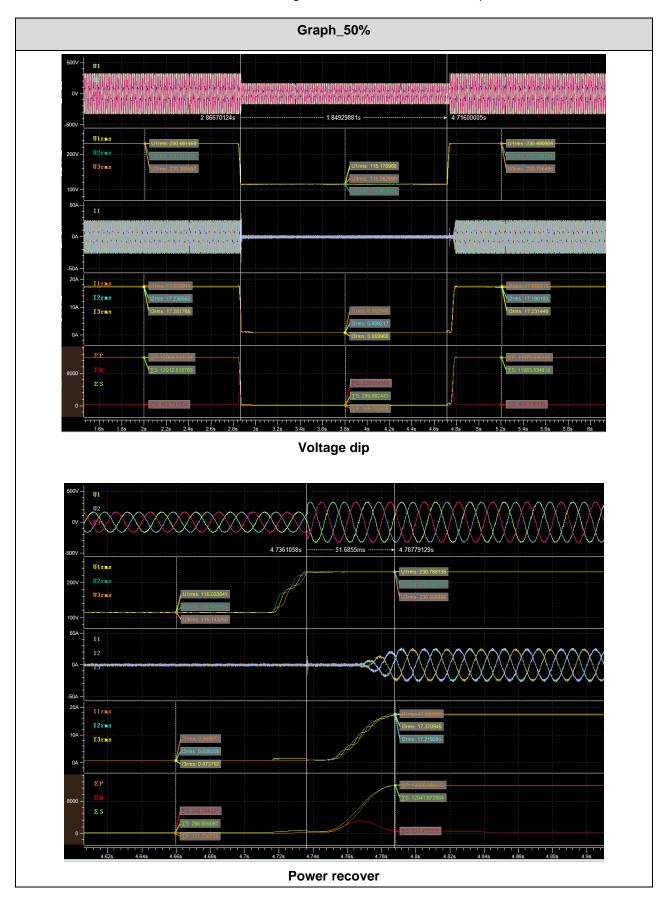

	L3-N		100/100/50.14	1849.06	0.053
	L1-L2	1797	50.32/50.34/100	1849.53	0.054
	L2-L3		100/50.32/50.25	1849.82	0.054
	L1-L3		50.23/100/50.37	1849.57	0.055
	three-phase symmetrical fault		50.32/50.36/50. 37	1849.30	0.052
	L1-N		75.25/100/100	2997.55	0.046
	L2-N		100/75.20/100	2998.50	0.043
	L3-N		100/100/75.27	2996.08	0.042
75%	L1-L2	2656	75.19/75.27/100	3000.13	0.045
	L2-L3		100/75.18/75.22	2999.36	0.044
	L1-L3		75.22/100/75.26	2996.85	0.044
	three-phase symmetrical fault		75.24/75.20/75. 15	2999.03	0.044

Remark:

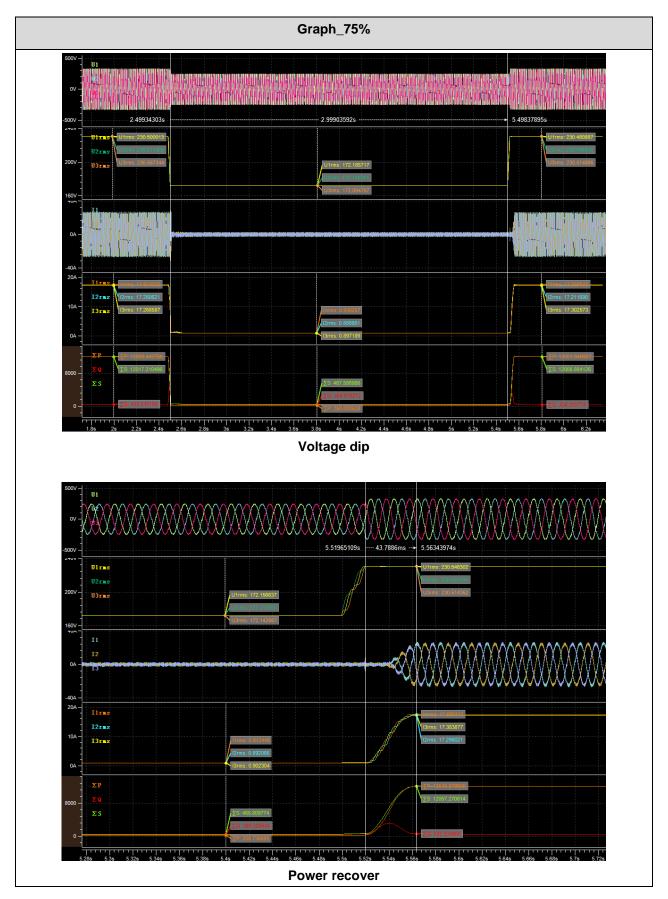
The tests are performed together with clause 4.7.4.2.2 Zero current mode and enabling of default setting: undervoltage of 50%Un



Page 44 of 111



Page 45 of 111



Page 46 of 111

Page 47 of 111

Total Quality. Assured.

Page 48 of 111

Test at partial le Udip	Type	t min (ms)	U meas.(%)	T meas.(ms)	P recover (s)
oup	L1-N		4.61/100/100	399.52	0.028
	L2-N	-	100/4.45/100	399.73	0.026
	L3-N		100/100/4.19	400.09	0.026
	L1-L2		4.43/4.35/100	399.75	0.027
5%	L2-L3	250	100/4.51/4.50	399.09	0.026
	L1-L3		4.37/100/4.44	399.79	0.027
	three-phase symmetrical fault		4.47/4.48/4.45	399.54	0.028
	L1-N		24.87/100/100	1000.92	0.029
	L2-N		100/24.92/100	999.31	0.026
	L3-N		100/100/24.80	1000.67	0.027
25%	L1-L2	938	24.93/24.94/100	999.93	0.027
_0,0	L2-L3		100/24.97/24.89	999.88	0.028
	L1-L3		24.98/100/25.11	1000.44	0.026
	three-phase symmetrical fault		25.05/25.06/25. 09	999.76	0.031
	L1-N		50.17/100/100	1850.50	0.037
	L2-N		100/49.88/100	1849.82	0.037
	L3-N		100/100/50.02	1851.62	0.035
50%	L1-L2		50.03/50.04/100	1849.63	0.038
0070	L2-L3		100/49.96/50.03	1849.15	0.037
	L1-L3	1797	50.07/100/49.99	1849.66	0.038
	three-phase symmetrical fault		49.96/49.97/49. 97	1849.40	0.037
	L1-N		75.07/100/100	2998.41	0.027
	L2-N		100/75.05/100	2999.36	0.025
75%	L3-N	2656	100/100/74.91	3009.62	0.027
	L1-L2		74.95/74.88/100	2998.84	0.027
	L2-L3]	100/74.96/75.03	2996.05	0.027

Total Quality. Assured.

Page 49 of 111

Report no. 210416108GZU-004

L1-L3	74.87/100/74.95	2997.96	0.029
three-phase symmetrical fault	75.07/74.97/74. 93	2999.56	0.030

Remark:

The tests are performed together with clause 4.7.4.2.2 Zero current mode and enabling of default setting: undervoltage of 50%Un

100\ 0\

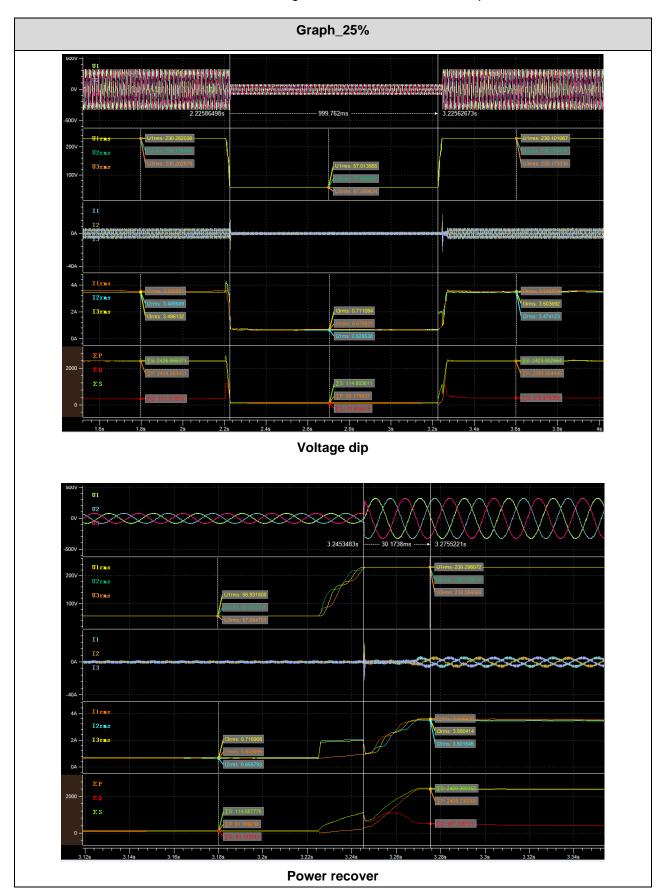
20/

0/

-20/

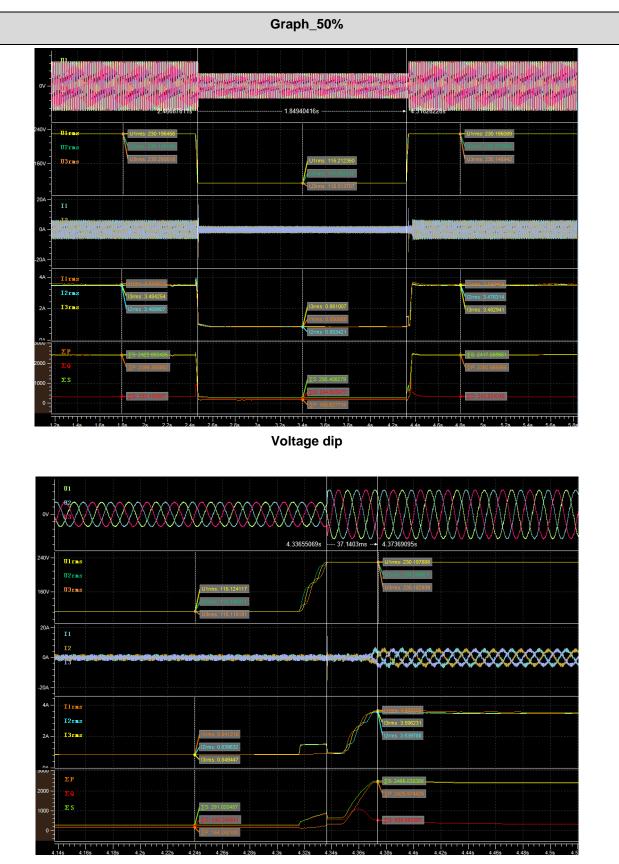
2A

2000

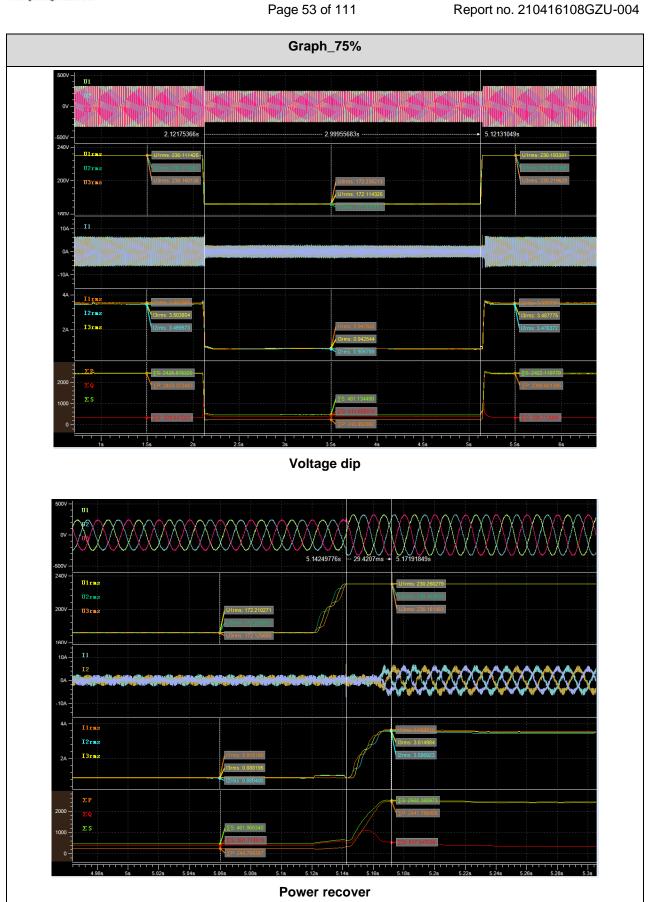

Page 50 of 111 Graph_5% **U**1 49 - Лаанаануу култулуулуу анаануу култулуу култандаган алаануу култулуу култулуу култулуу култулуу култулуу култ Калаануу култулуу култулуу култулуу култулуу култулуу култулуу култулуу култулуу култулу култулу култулу култул 399.544ms U2rms U3rms 1.1.1.1.1.1.1 I2rms I3rns

0\ 2.83867885s -- 27.3047m U1rms U3rms 4A I3rns 0,A **Power recover**

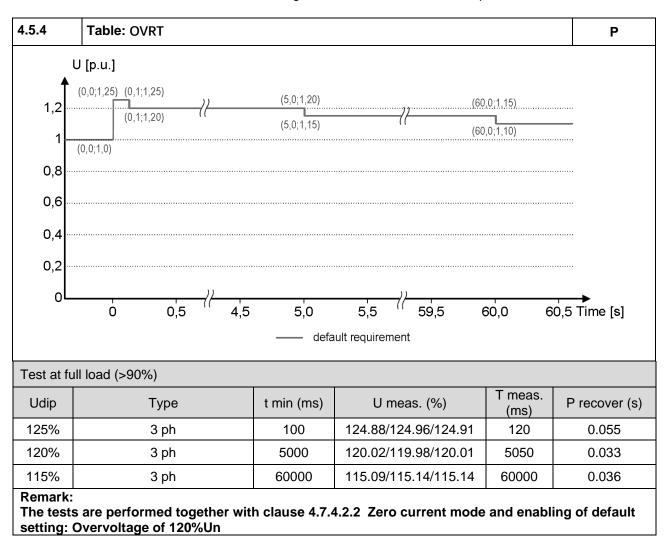
Voltage dip



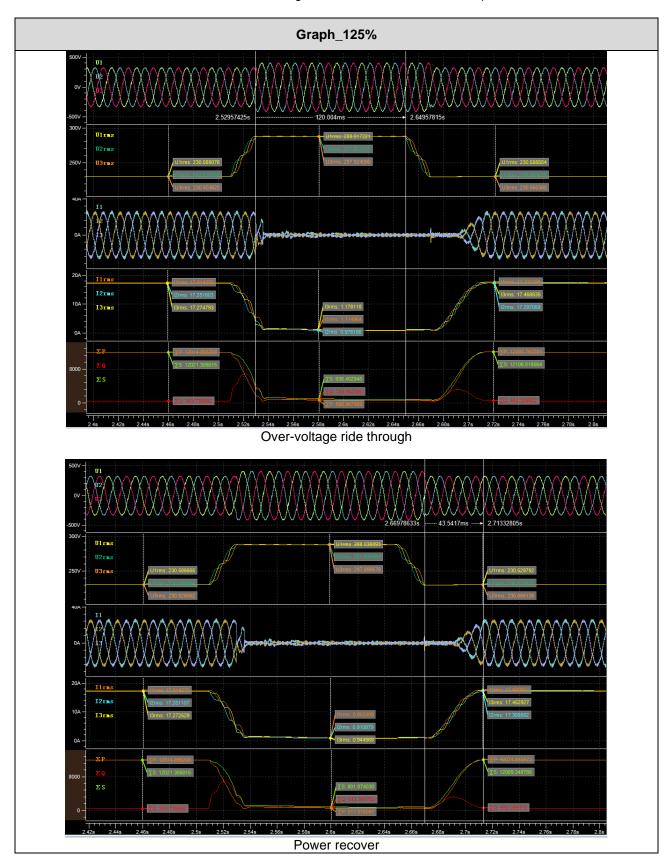
Page 51 of 111


Total Quality. Assured.

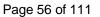
Page 52 of 111

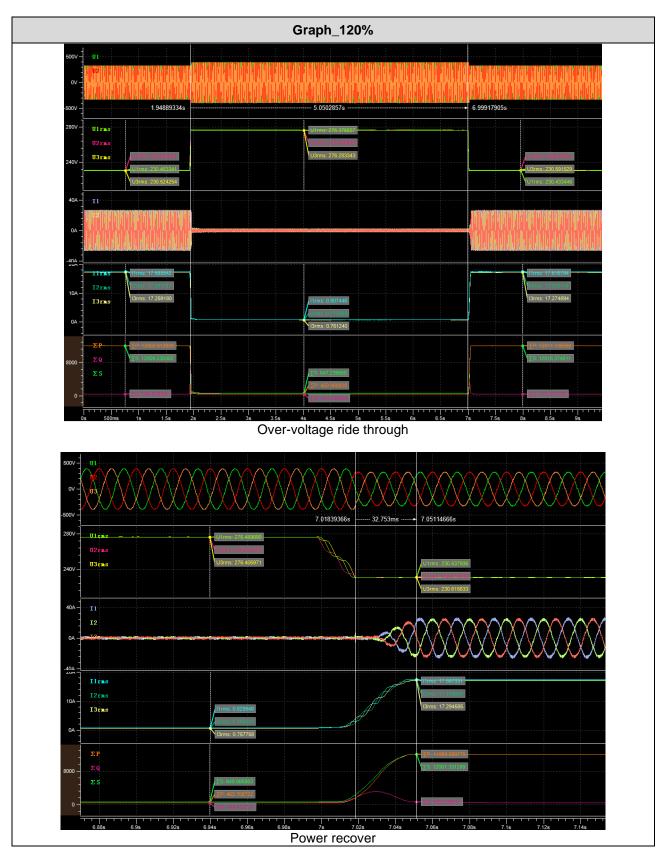


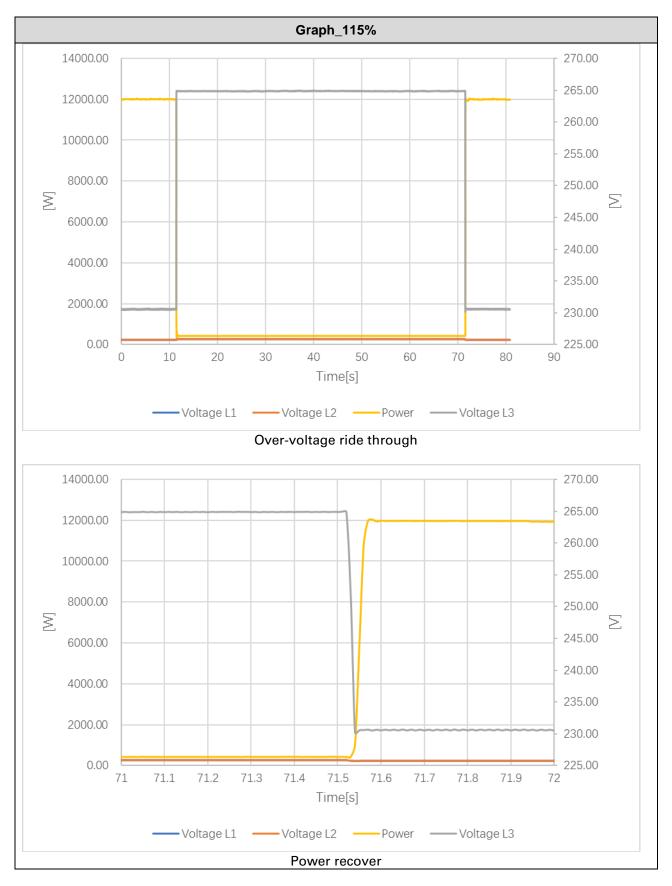
Total Quality. Assured.

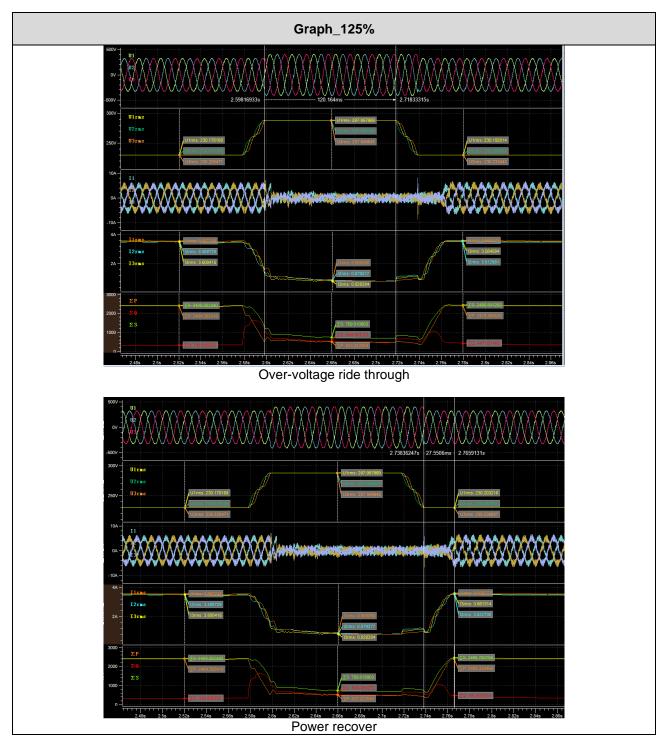

Total Quality. Assured.

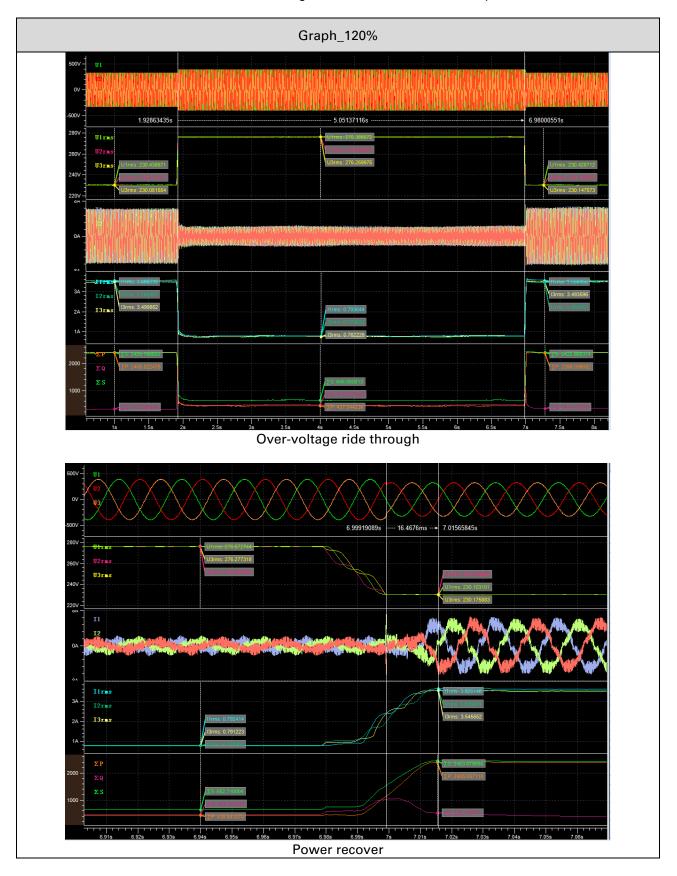
Page 54 of 111



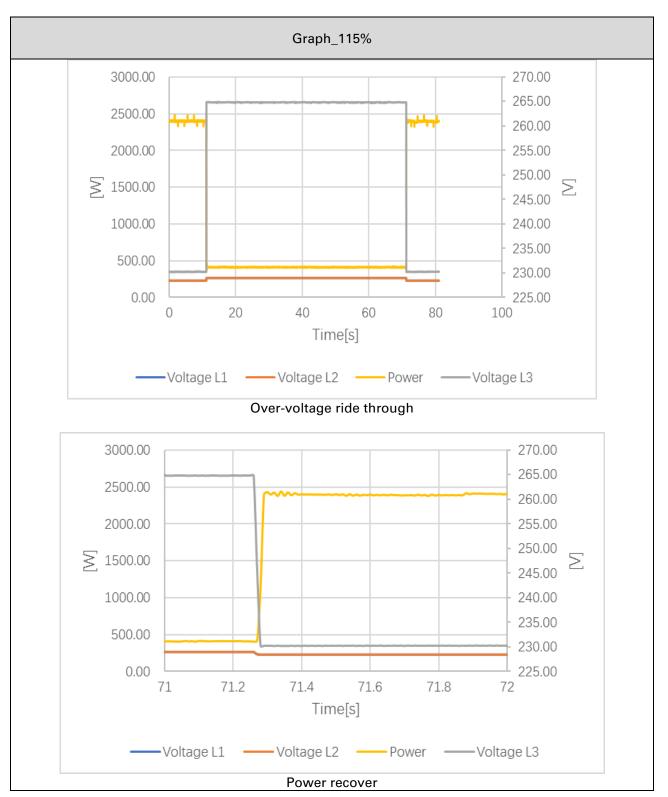

Page 55 of 111


Total Quality. Assured.


Page 57 of 111


Page 58 of 111

Test at p	Test at partial load (20%)									
Udip	Туре	t min (ms)	U meas. (%)	T meas. (ms)	P recover (s)					
125%	3 ph	100	124.71/124.76/124.74	190	0.15					
120%	3 ph	5000	119.76/119.76/119.75	5090	0.17					
115%	3 ph	60000	114.84/114.78/114.86	61000	0.08					



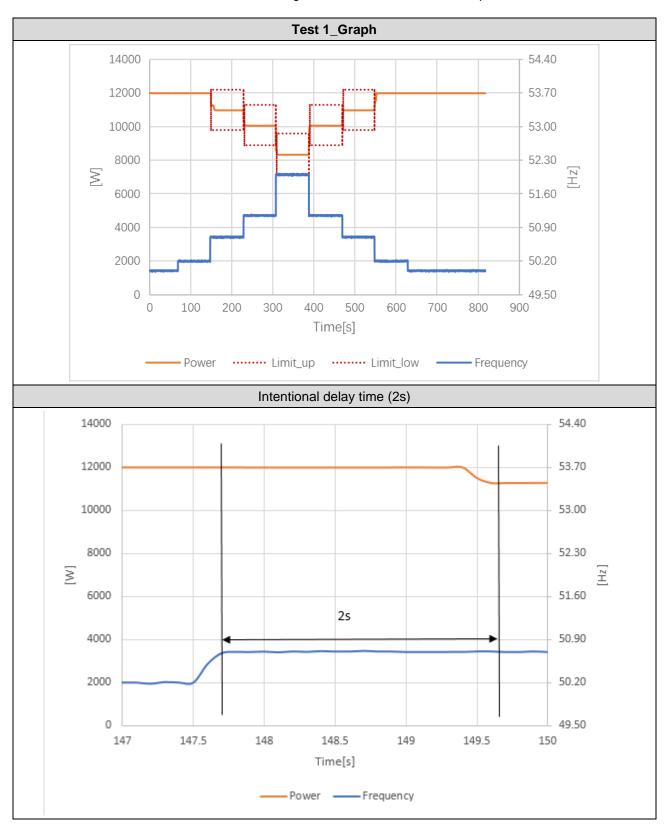
Page 59 of 111

Page 60 of 111

Total Quality. Assured.

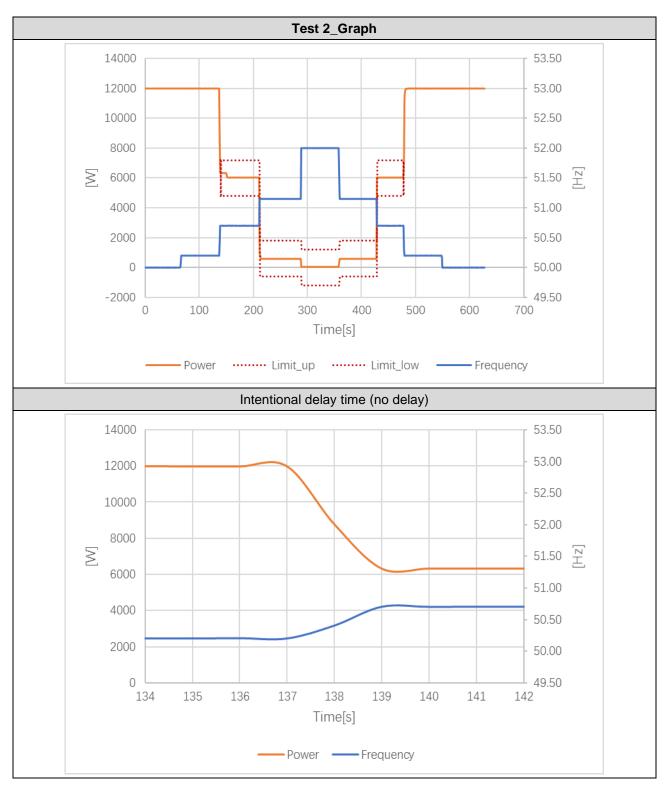
Page 61 of 111

4.6.1 Table: Po	ower respon	se to over fr	equency		Р
	1009	% Pn, f1 =50.2	2Hz; droop=12%;	f-stop deactivated, with	n delay of 2 s
Test 1	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)
50Hz ± 0.01Hz	50.00	11994.78	12000		
50.2Hz ± 0.01Hz	50.20	11989.59	12000		
50.70Hz ± 0.01Hz	50.70	10998.38	10998	0.38	± 1200
51.15Hz ± 0.01Hz	51.15	10087.25	10096	-8.75	± 1200
52.0Hz ± 0.01Hz	52.00	8332.91	8393	-60.09	± 1200
51.15Hz ± 0.01Hz	51.15	10058.27	10096	-37.73	± 1200
50.70Hz ± 0.01Hz	50.70	10979.11	10998	-18.89	± 1200
50.2Hz ± 0.01Hz	50.20	11941.39	12000		
50Hz ± 0.01Hz	50.00	11998.74	12000		
		100% Pn, f1 =	=50.2Hz; droop=2	2%; f-stop deactivated,	no delay
Test 2	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)
50Hz ± 0.01Hz	50.00	11995.42	12000		
50.2Hz ± 0.01Hz	50.20	11994.43	12000		
50.70Hz ± 0.01Hz	50.70	6088.88	6000	88.88	± 1200
51.15Hz ± 0.01Hz	51.15	601.73	600	1.73	± 1200
52.0Hz ± 0.01Hz	52.00	68.87	0	68.87	± 1200
51.15Hz ± 0.01Hz	51.15	594.78	600	-5.22	± 1200
50.70Hz ± 0.01Hz	50.70	6033.27	6000	33.27	± 1200
50.2Hz ± 0.01Hz	50.20	11988.12	12000		
50Hz ± 0.01Hz	50.00	11988.58	12000		
		50% Pn, f1 =	52.0Hz; droop=5	%; f-stop deactivated, r	no delay
Test 3	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)
50Hz ± 0.01Hz	50.00	6014.88			
51.0Hz ± 0.01Hz	51.00	6023.38	6000	23.38	± 1200
51.70Hz ± 0.01Hz	51.70	6024.91	6000	24.91	± 1200
52.0Hz ± 0.01Hz	52.00	6025.40	6000	25.4	± 1200
51.70Hz ± 0.01Hz	51.70	6016.11	6000	16.11	± 1200
51.00Hz ± 0.01Hz	51.00	6016.84	6000	16.84	± 1200
50Hz ± 0.01Hz	50.00	6016.53			

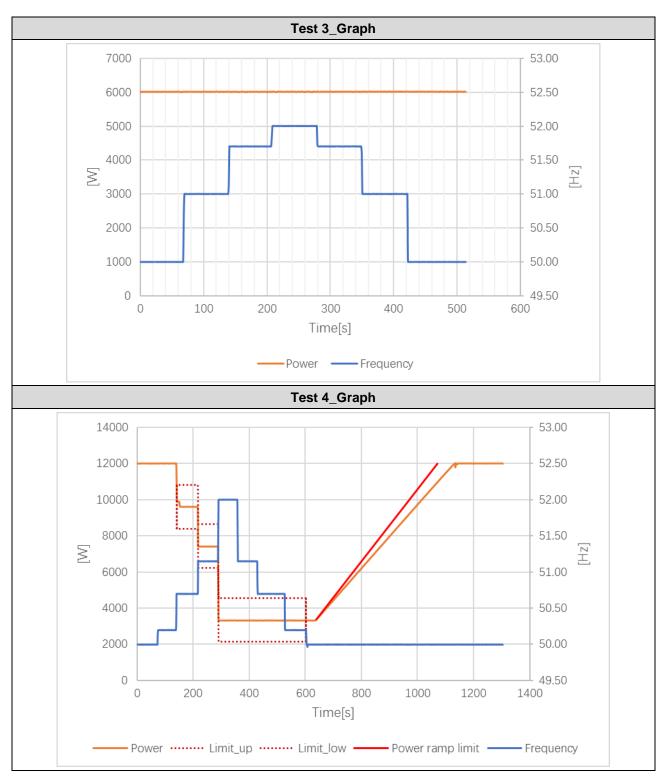

intertek Total Quality. Assured.

Page 62 of 111

	100% Pn,	f1 =50.2Hz; d	roop=5%; f-stop =	50.1, no delay, Deactiv	vation time tstop 30s
Test 4	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit (W)
50Hz ± 0.01Hz	50.00	12004.16	12000		
50.2Hz ± 0.01Hz	50.20	12004.25	12000		
50.70Hz ± 0.01Hz	50.70	9764.65	9600	164.65	± 1200
51.15Hz ± 0.01Hz	51.15	7431.24	7440	-8.76	± 1200
52.0Hz ± 0.01Hz	52.00	3338.22	3360	-21.78	± 1200
51.15Hz ± 0.01Hz	51.15	3334.02	3360	-25.98	± 1200
50.70Hz ± 0.01Hz	50.70	3334.18	3360	-25.82	± 1200
50.2Hz ± 0.01Hz	50.20	3324.12	3360	-35.88	± 1200
50Hz ± 0.01Hz	50.00	12009.67	12000		



Page 63 of 111



Page 64 of 111

Page 65 of 111

Total Quality. Assured.

Page 66 of 111

4.6.2	Table: Powe	r response	response to under frequency				
Test 1	est 1 0% Pn, f1 =49.8Hz; droop=12%; with delay of 2 s					6	
		f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit	
50Hz ± (0.01Hz	50.00	20.29				
49.8Hz -	± 0.01Hz	49.80	20.28	0	20.28	± 1200	
49.0Hz :	± 0.01z	49.00	1620.36	1603.2	17.16	± 1200	
48.0Hz :	± 0.01z	48.00	3611.11	3607.2	3.91	± 1200	
47.0Hz :	± 0.01z	47.00	5613.67	5611.2	2.47	± 1200	
46.0Hz :	± 0.01z	46.00	7581.78	7615.2	-33.42	± 1200	
47.0Hz :	± 0.01z	47.00	5625.94	5611.2	14.74	± 1200	
48.0Hz =	± 0.01z	48.00	3619.24	3607.2	12.04	± 1200	
49.0Hz -	± 0.01z	49.00	1617.11	1603.2	13.91	± 1200	
49.8Hz -	± 0.01Hz	49.80	62.38	0	62.38	± 1200	
50.0Hz =	± 0.01Hz	50.00	12003.39				

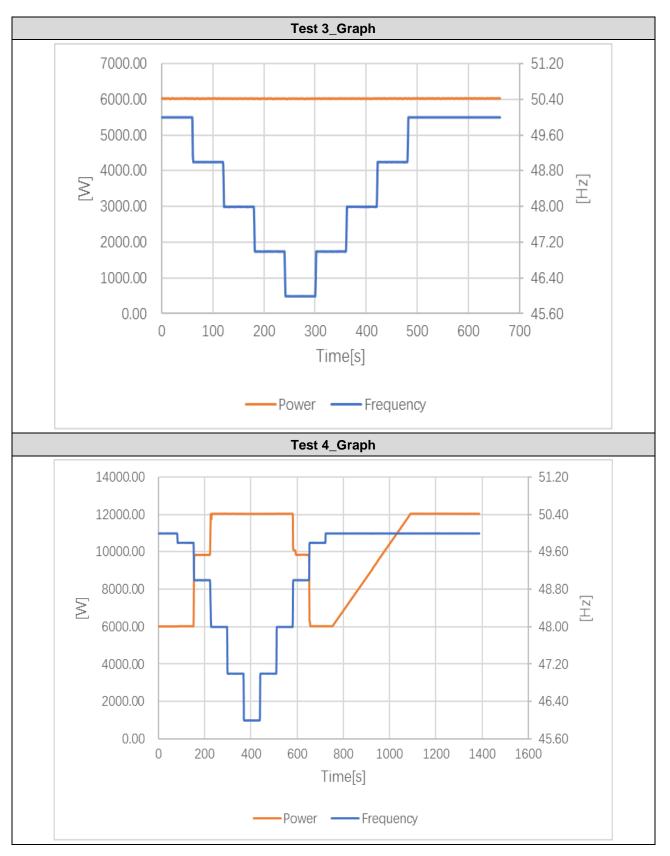
	0% Pn, f1 =49.8Hz; droop=5%; no delay						
Test 2	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit		
50Hz ± 0.01Hz	50.00	37.07					
49.8Hz ± 0.01Hz	49.80	41.12	0	41.12	± 1200		
49.0Hz ± 0.01Hz	49.00	3897.86	3840	57.86	± 1200		
48.0Hz ± 0.01Hz	48.00	8666.27	8640	26.27	± 1200		
47.0Hz ± 0.01Hz	47.00	12021.66	12000	21.66	± 1200		
46.0Hz ± 0.01Hz	46.00	12020.66	12000	20.66	± 1200		
47.0Hz ± 0.01Hz	47.00	12023.72	12000	23.72	± 1200		
48.0Hz ± 0.01Hz	48.00	8679.53	8640	39.53	± 1200		
49.0Hz ± 0.01Hz	49.00	3897.65	3840	57.65	± 1200		
49.8Hz ± 0.01Hz	49.80	41.33	0	41.33	± 1200		
50.0Hz ± 0.01Hz	50.00	12026.11					

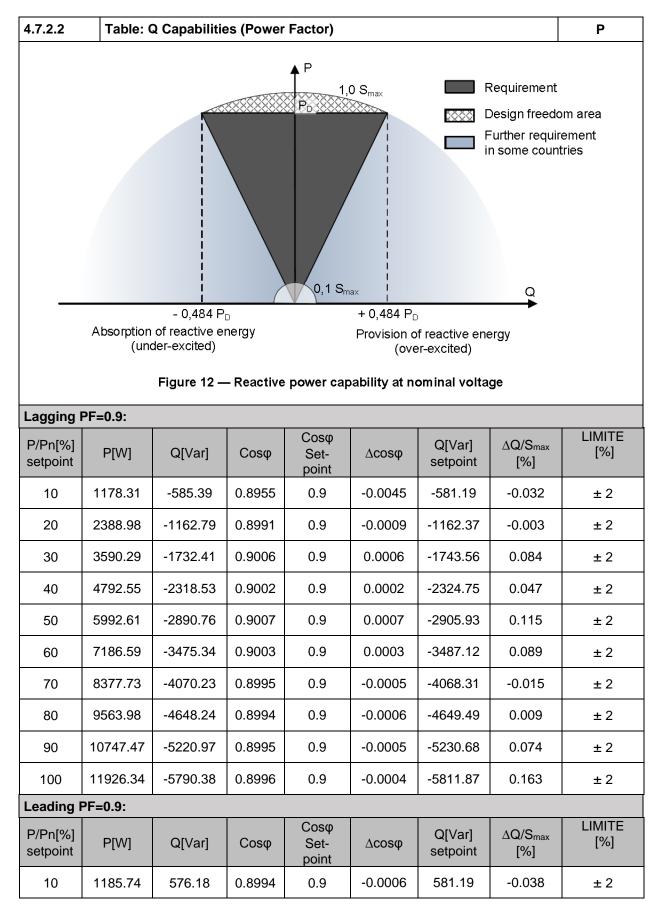
	50% Pn, f1 =46.0Hz; droop=5%; no delay						
Test 3	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit		
50Hz ± 0.01Hz	50.00	6013.07					
49.0Hz ± 0.01Hz	49.00	6015.82	6000	15.82	± 1200		
48.0Hz ± 0.01Hz	48.00	6009.53	6000	9.53	± 1200		
47.0Hz ± 0.01Hz	47.00	6014.88	6000	14.88	± 1200		
46.0Hz ± 0.01Hz	46.00	6013.96	6000	13.96	± 1200		
47.0Hz ± 0.01Hz	47.00	6014.76	6000	14.76	± 1200		
48.0Hz ± 0.01Hz	48.00	6013.13	6000	13.13	± 1200		
49.0Hz ± 0.01Hz	49.00	6008.50	6000	8.5	± 1200		
50.0Hz ± 0.01Hz	50.00	6014.08					

intertek Total Quality. Assured.

Page 67 of 111

50% Pn, f1 =49.8Hz; droop=5%;					
Test 4	f (Hz)	Measured output Power (W)	Calculated from standard characteristic curve P (W)	Tolerance between measured P and calculated P (W)	Tolerance Limit
50Hz ± 0.01Hz	50.00	6015.52			
49.8Hz ± 0.01Hz	49.80	6057.33	6000	57.33	± 1200
49.0Hz ± 0.01Hz	49.00	9853.51	9840	13.51	± 1200
48.0Hz ± 0.01Hz	48.00	12012.59	12000	12.59	± 1200
47.0Hz ± 0.01Hz	47.00	12011.71	12000	11.71	± 1200
46.0Hz ± 0.01Hz	46.00	12012.21	12000	12.21	± 1200
47.0Hz ± 0.01Hz	47.00	12015.05	12000	15.05	± 1200
48.0Hz ± 0.01Hz	48.00	12016.32	12000	16.32	± 1200
49.0Hz ± 0.01Hz	49.00	9844.67	9840	4.67	± 1200
49.8Hz ± 0.01Hz	49.80	6037.21	6000	37.21	± 1200
50.0Hz ± 0.01Hz	50.00	12013.52			

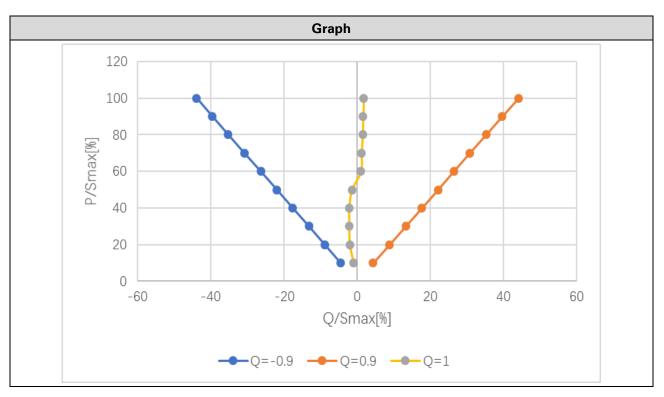




Page 69 of 111

Total Quality. Assured.

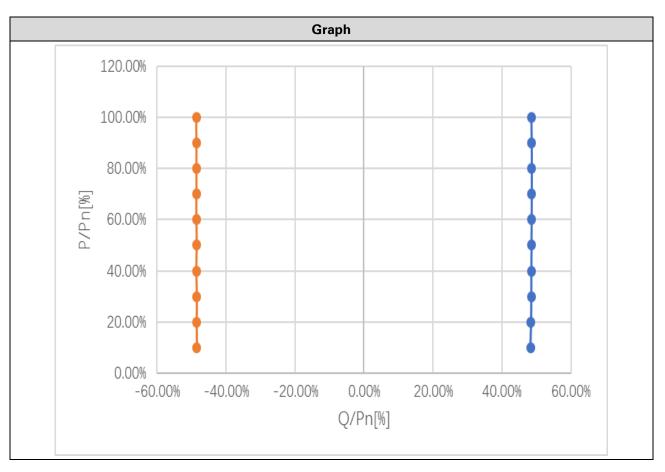
Page 70 of 111


Total Quality. Assured.

Page 71 of 111

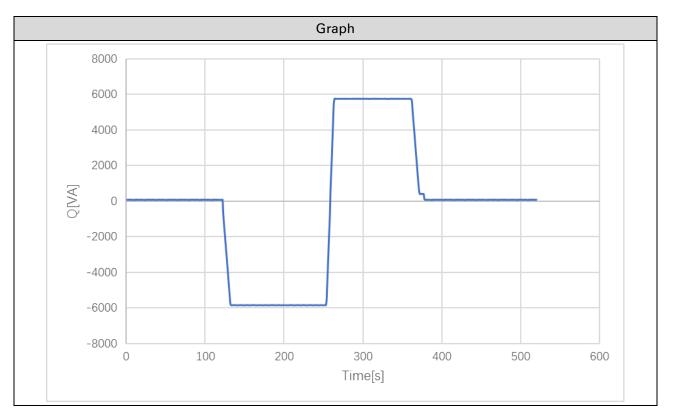
20	2394.93	1166.33	0.8990	0.9	-0.0010	1162.37	0.030	± 2
30	3600.44	1747.22	0.8997	0.9	-0.0003	1743.56	0.028	± 2
40	4801.67	2334.39	0.8993	0.9	-0.0007	2324.75	0.073	±2
50	6000.87	2914.50	0.8995	0.9	-0.0005	2905.93	0.065	±2
60	7195.47	3479.92	0.9002	0.9	0.0002	3487.12	-0.055	± 2
70	8387.84	4058.56	0.9002	0.9	0.0002	4068.31	-0.074	± 2
80	9575.71	4647.78	0.8996	0.9	-0.0004	4649.49	-0.013	± 2
90	10759.88	5235.07	0.8992	0.9	-0.0008	5230.68	0.033	± 2
100	11939.94	5824.18	0.8988	0.9	-0.0012	5811.87	0.093	± 2
Q=0:								
P/Pn[%] setpoint	P[W]	Q[Var]	Cosφ	Cosφ Set- point	Δcosφ	Q[Var] setpoint	∆Q/S _{max} [%]	LIMITE [%]
10	1187.15	-119.88	0.9726	1	-0.0274	0	-0.908	±2
20	2401.78	-260.99	0.9932	1	-0.0068	0	-1.977	± 2
30	3612.25	-278.91	0.9968	1	-0.0032	0	-1.961	± 2
40	4819.84	-281.24	0.9981	1	-0.0019	0	-1.903	± 2
50	6026.11	-182.87	0.9987	1	-0.0013	0	-1.385	± 2
60	7227.01	136.22	0.9988	1	-0.0012	0	1.032	± 2
70	8428.31	160.34	0.9988	1	-0.0012	0	1.215	± 2
80	9624.94	196.46	0.9988	1	-0.0012	0	1.488	± 2
90	10820.04	216.41	0.9986	1	-0.0014	0	1.639	± 2
100	12010.72	235.33	0.9985	1	-0.0015	0	1.783	± 2

Total Quality. Assured.

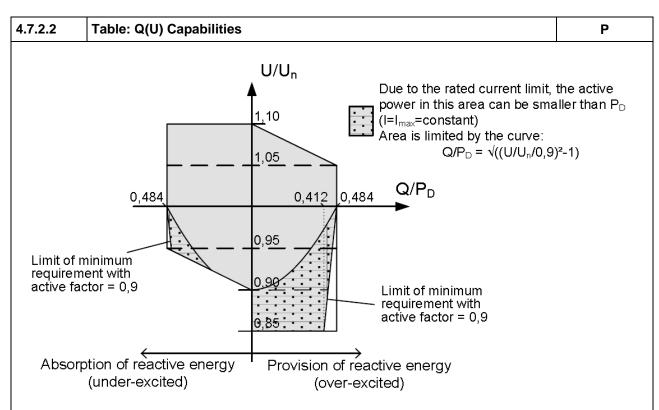

Page 73 of 111

Report no. 210416108GZU-004

Q=48.43%Pn	I					
P/Pn[%] setpoint	P[W]	Q[Var]	Cosφ	Q[Var] setpoint	∆Q/S _{max} [%]	LIMITE [%]
10	1117.05	5854.47	0.1874	5811.60	0.325	± 2
20	2333.31	5851.37	0.3704	5811.60	0.301	± 2
30	3548.76	5839.47	0.5193	5811.60	0.211	± 2
40	4757.16	5859.71	0.6303	5811.60	0.364	± 2
50	5963.77	5847.52	0.7140	5811.60	0.272	± 2
60	7165.24	5852.40	0.7745	5811.60	0.309	± 2
70	8362.45	5864.07	0.8188	5811.60	0.397	± 2
80	9555.94	5872.17	0.8520	5811.60	0.459	± 2
90	10744.40	5880.10	0.8772	5811.60	0.519	± 2
100	11931.09	5890.93	0.8967	5811.60	0.601	± 2
Q=-48.43%Pi	n					
P/Pn[%] setpoint	P[W]	Q[Var]	Cosφ	Q[Var] setpoint	∆Q/S _{max} [%]	LIMITE [%]
10	1096.87	-5857.10	0.1841	-5811.60	-0.345	± 2
20	2316.07	-5843.66	0.3685	-5811.60	-0.243	± 2
30	3530.11	-5861.50	0.5159	-5811.60	-0.378	± 2
40	4739.93	-5876.72	0.6278	-5811.60	-0.493	± 2
50	5946.00	-5868.94	0.7117	-5811.60	-0.434	± 2
60	7146.82	-5860.65	0.7733	-5811.60	-0.372	± 2
70	8343.43	-5869.25	0.8179	-5811.60	-0.437	± 2
80	9539.07	-5876.54	0.8514	-5811.60	-0.492	± 2
90	10728.93	-5889.45	0.8766	-5811.60	-0.590	± 2
100	11915.60	-5876.97	0.8968	-5811.60	-0.495	±2



Page 75 of 111


Table: Check t	he settling tim	e					Р
	Test 1			Tes	t 2		
Output powe [%]	r Qmax ind [ind [VA] Qmax cap [VA] Output power Qmax ind [VA] Qma		Qmax	(max _{cap} [VA]		
100% Pn	5812	5812	50% Pn	5812		5	812
		Test 1 (see	Graph 1): 100 Pn	%			
Point	Output power	transient	Vac	Q _{E60} [VA]	Т	r [s]	limit [s]
1	11961.33W	$0 \rightarrow Qmax ind$	230.62	-5888.18	1	10.0	60
2	11972.17W	Qmax∣ind → Qmax∣cap	230.60	5855.71	1	11.0	60
3	12032.25W	$Qmax cap \rightarrow 0$	230.65	88.89		18.0	60
		Test 2 (see	Graph 2): 50%	Pn			
Point	Output power	transient	Vac	Q _{E60} [VA]	Т	r [s]	limit [s]
1	6067.53W	$0 \rightarrow Qmax ind$	230.52	-5846.98	1	11.6	60
2	6031.48W	Qmax∣ind → Qmax∣cap	230.26	5757.39	1	11.2	60
3	6068.84W	$Qmax cap \rightarrow 0$	230.54	79.16		18.0	60

Total Quality. Assured.

Page 76 of 111

Report no. 210416108GZU-004

Figure 13 — Reactive power capability at active power P_D in the voltage range (positive sequence component of the fundamental)

Over-excited:						
	AC o	utput		React	ive power mea	sured
Voltage		Measured		Reactive	Value	
setting [V/Vn]	Voltage [V]	[V/Vn]	Active power [W]	power [Var]	[Q/P _D]	Limits
1.10	253.31	1.1013	12037.64	163.76	0.0136	±0.02
1.08	248.18	1.0790	12034.96	2333.30	0.1944	0.194±0.02
1.05	242.29	1.0534	11863.09	5779.98	0.4817	0.484±0.02
1.00	229.86	0.9994	11863.38	5816.52	0.4847	0.484±0.02
0.95	218.38	0.9495	11626.71	5828.47	0.4857	
0.92	213.68	0.9290	11011.38	5888.27	0.4907	
0.90	207.02	0.9000	10858.50	5835.87	0.4863	
0.85	195.46	0.8498	10068.59	5849.59	0.4875	

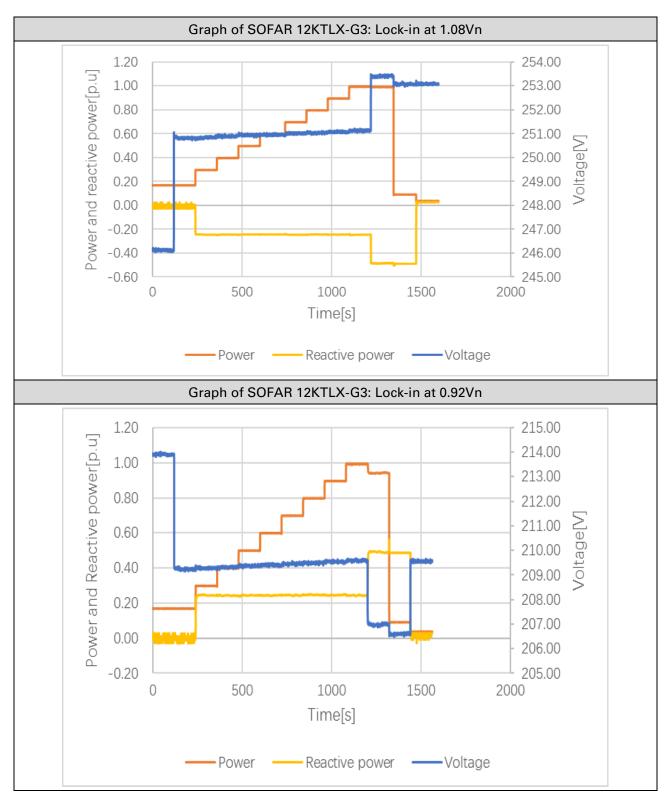
Page 77 of 111

Under-excite	d:					
	AC o	output	React	ive power mea	sured	
Voltage		Measured		Reactive	Value	
setting [V/Vn]	Voltage [V]	[V/Vn]	Active power [W]	power [Var]	[Q/P _D]	Limits
1.10	253.14	1.1006	11918.43	-5827.78	-0.4857	-0.484±0.02
1.08	248.23	1.0793	11923.99	-5816.60	-0.4847	-0.484±0.02
1.05	241.41	1.0496	11930.47	-5808.39	-0.4840	-0.484±0.02
1.00	229.89	0.9995	11933.09	-5787.05	-0.4822	-0.484±0.02
0.95	218.44	0.9497	11700.19	-5772.13	-0.4810	
0.92	211.35	0.9189	11591.18	-2333.34	-0.1944	-0.194±0.02
0.90	206.74	0.8988	12026.11	-167.38	-0.0139	±0.02

Total Quality. Assured.

Page 78 of 111

4.7.2.3.3	Table: Q Control.	Voltage relat	ed control m	ode		Р
P/Pn [%] Set-point	Vac [V] Set-point	P/Pn [%] measured	Vac [V] Measured	Q [VAr] measured	Q [Var] expected	∆ Q [Var] (≤ ± 5 % Pn)
< 20 %	1,07 Vn	16.87	246.13	-190.81	≈0 (< ± 5 % Pn)	-1.590
< 20 %	1,09 Vn	16.87	250.82	-195.48	≈0 (< ± 5 % Pn)	-1.629
<20 % →30 9	% 1,09 Vn	29.69	250.84	-2936.24	-2906 (within 10sec)	-0.252
40 %	1,09 Vn	39.72	250.90	-2930.48	-2906	-0.204
50 %	1,09 Vn	49.75	250.95	-2921.11	-2906	-0.126
60 %	1,09 Vn	59.75	250.96	-2917.85	-2906	-0.099
70 %	1,09 Vn	69.71	251.02	-2943.03	-2906	-0.309
80 %	1,09 Vn	79.65	251.04	-2920.35	-2906	-0.120
90 %	1,09 Vn	89.56	251.08	-2928.52	-2906	-0.188
100 %	1,09 Vn	99.66	251.14	-2944.62	-2906	-0.322
100 %	1,1 Vn	99.39	253.42	-5809.05	-5812	0.025
100 % →10 9	% 1,1 Vn	9.12	253.08	-5862.19	-5812	-0.418
10 % → ≤ 5 9	% 1,1 Vn	3.73	253.09	321.36	≈0 (< ± 5 % Pn)	2.678
P/Pn [%] Set-point	Vac [V] Set-point	P/Pn [%] measured	Vac [V] Measured	Q [VAr] measured	Q [Var] expected	∆ Q [Var] (≤ ± 5 % Pn)
< 20 %	0.93 Vn	16.92	213.92	82.67	≈0 (< ± 5 % Pn)	0.689
< 20 %	0.91 Vn	16.91	209.24	81.18	≈0 (< ± 5 % Pn)	0.677
<20 % → 30	% 0.91 Vn	29.87	209.28	2938.28	2906 (within 10sec)	0.269
40 %	0.91 Vn	39.92	209.32	2919.50	2906	0.113
50 %	0.91 Vn	49.93	209.37	2934.37	2906	0.236
60 %	0.91 Vn	59.91	209.41	2930.93	2906	0.208
70 %	0.91 Vn	69.85	209.46	2942.07	2906	0.301
80 %	0.91 Vn	79.74	209.49	2968.80	2906	0.523
90 %	0.91 Vn	89.60	209.54	2953.58	2906	0.396



Page 79 of 111

100 %	0.91 Vn	99.38	209.58	2930.47	2906	0.204
100 %	0.90 Vn	94.16	206.98	5899.90	5812	0.732
100 % →10 %	0.90 Vn	9.12	206.60	5842.91	5812	0.258
10 % →≤ 5 %	0.91 Vn	3.75	209.57	310.85	≈0 (< ± 5 % Pn)	2.590

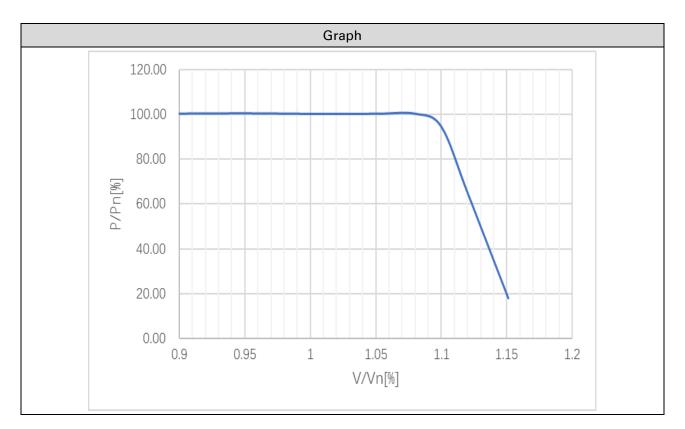
Page 80 of 111

Total Quality. Assured.

Page 81 of 111

Report no. 210416108GZU-004

4.7.2.3.4	Table: Q C	ontrol Powe	r related co	ontrol modes	6			Р
P Desired (%Sn)	P measured (%Sn)	Q measured (Var)	Voltage Desired (%Un)	Voltage Measured (%Un)	Power Factor desired (cos φ)	Power Factor measured (cos φ)	∆Q (%S _{Max})	Limit (%S _{Max})
20%	19.83%	-229	<105%	103.95%	1.0000	0.995	-1.73	±2
30%	30.07%	-218	<105%	103.98%	1.0000	0.998	-1.65	±2
40%	40.11%	-208	<105%	104.00%	1.0000	0.999	-1.58	±2
50%	50.23%	-193	<105%	104.01%	1.0000	0.999	-1.46	±2
60%	60.12%	-195	<105%	103.98%	1.0000	0.999	-1.48	±2
60%	60.12%	-1456	>105%	105.95%	0.9800	0.980	0.05	±2
70%	70.33%	-2480	>105%	105.89%	0.9600	0.960	-0.23	±2
80%	80.17%	-3486	>105%	105.84%	0.9400	0.940	-0.01	±2
90%	90.11%	-4579	>105%	105.82%	0.9200	0.921	0.17	±2
100%	100.03%	-5753	>105%	105.82%	0.9000	0.902	0.45	±2
100%	100.03%	-220	<100%	98.58%	1.0000	0.999	-1.67	±2


Remark: Tested at lock-in voltage 1.05 Vn and lock-out voltage Vn.

The Lock-in value is adjustable between Vn and 1.1Vn in 0.01V steps, the Lock-out value is adjustable between 0.9Vn and Vn in 0.01V steps

Total Quality. Assured.

Page 82 of 111

4.7.3	Table:	Voltage control by a	active power			Р
Step #		Set voltage vaule V/Vn	Measured voltage vaule V/Vn	Measured power values [W]	Mea [%]	asured power
1		0.90	0.8998	12011.33		100
2		0.95	0.9503	12016.23		100.14
3		1.00	1.0001	12017.86		100.17
4		1.05	1.0500	12011.13		100.11
5		1.08	1.0804	12012.12		100.12
6		1.10	1.1001	11332.65		100.27
7		1.12	1.1202	7783.04		94.44
8		1.15	1.1512	2164.21		64.86

Total Quality. Assured.

Page 83 of 111

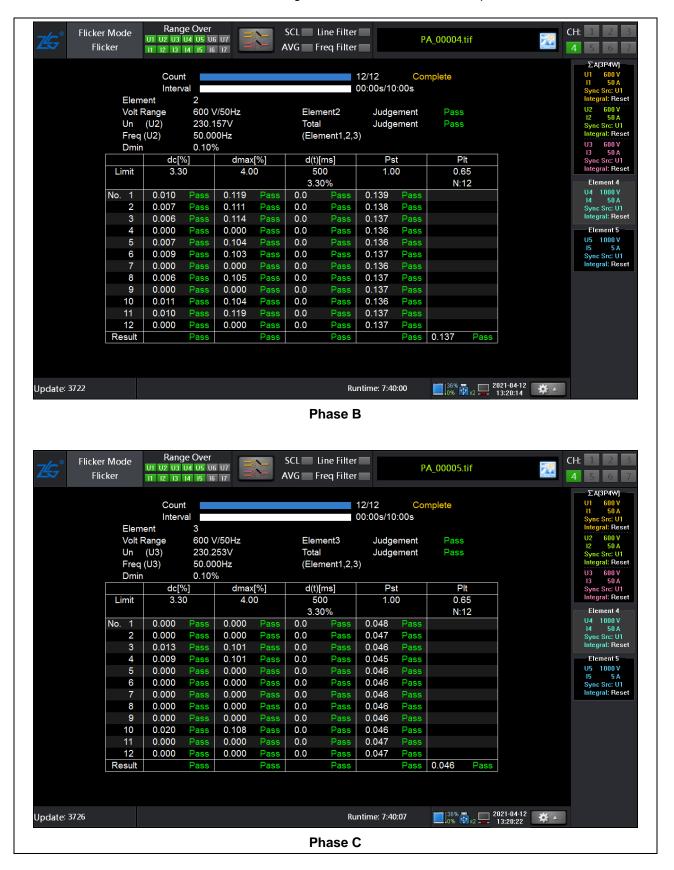
4.8	TABLE: Current harmo	nics emission test		Р
Current harm	nonics emission test for	class A limit (Accordi	ng to EN 61000-3-2)	
Model: SOFA	R 3.3KTLX-G3			
Nr./Orde	r Phase A Ih(A)	Phase B Ih(A)	Phase C Ih(A)	LIMIT (A)
2	0.0077	0.0089	0.0061	1.0800
3	0.0299	0.0326	0.0391	2.3000
4	0.0106	0.0075	0.0062	0.4300
5	0.0302	0.0330	0.0318	1.1400
6	0.0032	0.0046	0.0029	0.3000
7	0.0166	0.0078	0.0155	0.7700
8	0.0050	0.0041	0.0025	0.2300
9	0.0099	0.0070	0.0159	0.4000
10	0.0041	0.0042	0.0034	0.1840
11	0.0083	0.0088	0.0150	0.3300
12	0.0024	0.0028	0.0024	0.1530
13	0.0080	0.0053	0.0123	0.2100
14	0.0026	0.0023	0.0023	0.1310
15	0.0051	0.0047	0.0087	0.1500
16	0.0024	0.0023	0.0027	0.1150
17	0.0050	0.0042	0.0062	0.1320
18	0.0021	0.0023	0.0023	0.1020
19	0.0042	0.0031	0.0052	0.1180
<u>20</u> 21	0.0020	0.0020	0.0021 0.0045	0.0920
21	0.0032	0.0034	0.0043	0.0840
22	0.0021	0.0109	0.0093	0.0980
20	0.0019	0.0019	0.0020	0.0770
25	0.0123	0.0101	0.0110	0.0900
26	0.0018	0.0019	0.0019	0.0710
27	0.0029	0.0034	0.0028	0.0830
28	0.0018	0.0023	0.0021	0.0660
29	0.0148	0.0149	0.0146	0.0780
30	0.0019	0.0016	0.0018	0.0610
31	0.0121	0.0136	0.0119	0.0730
32	0.0016	0.0017	0.0016	0.0580
33	0.0030	0.0040	0.0026	0.0680
34	0.0015	0.0014	0.0017	0.0540
<u>35</u> 36	0.0120	0.0104	0.0098	0.0640
30	0.0013	0.0093	0.0100	0.0610
38	0.0082	0.0093	0.0015	0.0810
39	0.0026	0.0013	0.0013	0.0580
40	0.0013	0.0013	0.0016	0.0460

Total Quality. Assured.

Page 84 of 111

4.8 T	ABLE: Current harmon	ics emission test		Р
Current harmor	nics emission test to El	N 61000-3-12		
Model: SOFAR	12KTLX-G3			
Nr./Order	Phase A Ih(%)	Phase B Ih(%)	Phase C Ih(%)	LIMIT (%)
2	0.0674	0.0668	0.0345	8
3	0.2092	0.3286	0.4428	21.6
4	0.0694	0.0590	0.0390	4
5	0.4278	0.2145	0.3214	10.7
6	0.0295	0.0510	0.0275	2.67
7	0.2957	0.2797	0.1669	7.2
8	0.0272	0.0303	0.0174	2
9	0.1058	0.0640	0.1633	3.8
10	0.0340	0.0334	0.0182	1.6
11	0.2080	0.0676	0.1768	3.1
12	0.0140	0.0175	0.0174	1.33
13	0.1486	0.1082	0.1333	2
14	0.0193	0.0146	0.0166	
15	0.0352	0.0432	0.0426	
16	0.0179	0.0137	0.0185	
17	0.1188	0.1678	0.1329	
18	0.0140	0.0156	0.0147	
19	0.1459	0.1359	0.1399	
<u>20</u> 21	0.0126	0.0153 0.0472	0.0155 0.0466	
21	0.0174	0.0472	0.0466	
22	0.1523	0.0745	0.1616	
23	0.1523	0.0745	0.0148	
24	0.1422	0.1528	0.0998	
26	0.0183	0.0153	0.0139	
20	0.0448	0.0298	0.0559	
28	0.0194	0.0183	0.0179	
29	0.2209	0.1934	0.1906	
30	0.0139	0.0147	0.0139	
31	0.1978	0.2013	0.1664	
32	0.0124	0.0140	0.0143	
33	0.0436	0.0243	0.0379	
34	0.0125	0.0144	0.0136	
35	0.1451	0.1241	0.1279	
36	0.0132	0.0144	0.0126	
37	0.1161	0.1252	0.1059	
38	0.0114	0.0114	0.0122	
39	0.0281	0.0203	0.0315	
40	0.0113	0.0114	0.0128	
THD	0.8037	0.7027	0.7907	23
PWHD	1.4173	1.3764	1.3778	23

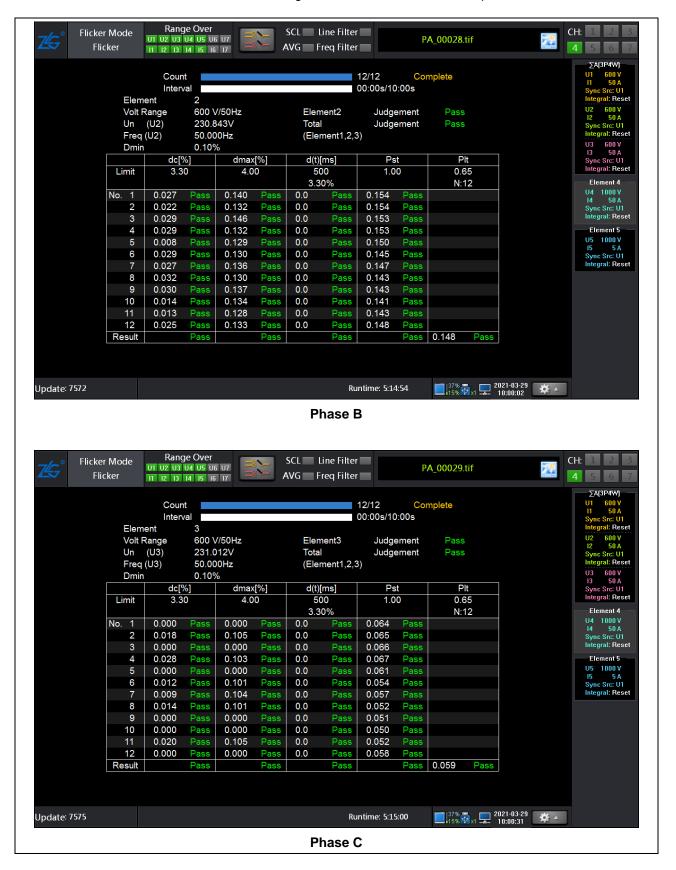
Total Quality. Assured.


Page 85 of 111

4.8	TAB	LE: Flicker			Р			
Flicker measu	Flicker measurement							
According to	EN 6	1000-3-3						
Model: SOFA	R 3.3	KTLX-G3						
Value	Value P _{st} P _{lt} d _c				d _{max}			
Limit		≤1	≤ 0.65	≤ 3.30%	4%			
Test value	;	0.044	0.032	0.114	0.213			
(Phase A)		0.044	0.032					
Test value	9	0 120	0 1 2 7	0.011	0 110			
(Phase B)		0.139	0.137	0.011	0.119			
Test value	;	0.040	0.040 0.040 0.000 0.100					
(Phase C)		0.048	0.046	0.020	0.108			


Page 86 of 111

Total Quality. Assured.

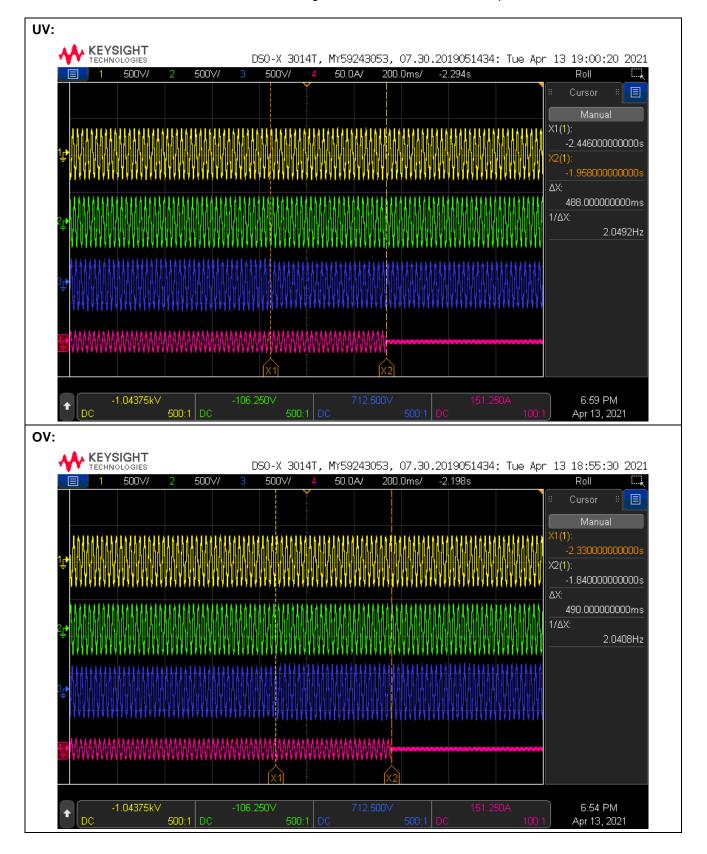

Page 87 of 111

4.8	TAB	LE: Flicker	E: Flicker					
Flicker measu	Ireme	ent						
According to	EN 6	1000-3-3						
Model: SOFA	R 12k	KTLX-G3						
Value	Value P _{st} P _{lt} d _c				d _{max}			
Limit		≤1	≤ 0.65	≤ 3.30%	4%			
Test value	;	0.078	0.066	0.127	0.203			
(Phase A)		0.078	0.000		0.205			
Test value	;	0.154	0.148	0.032	0.146			
(Phase B)		0.154	0.140	0.032	0.140			
Test value)	0.067	0.105					
(Phase C)		0.067	0.059	0.028	0.105			

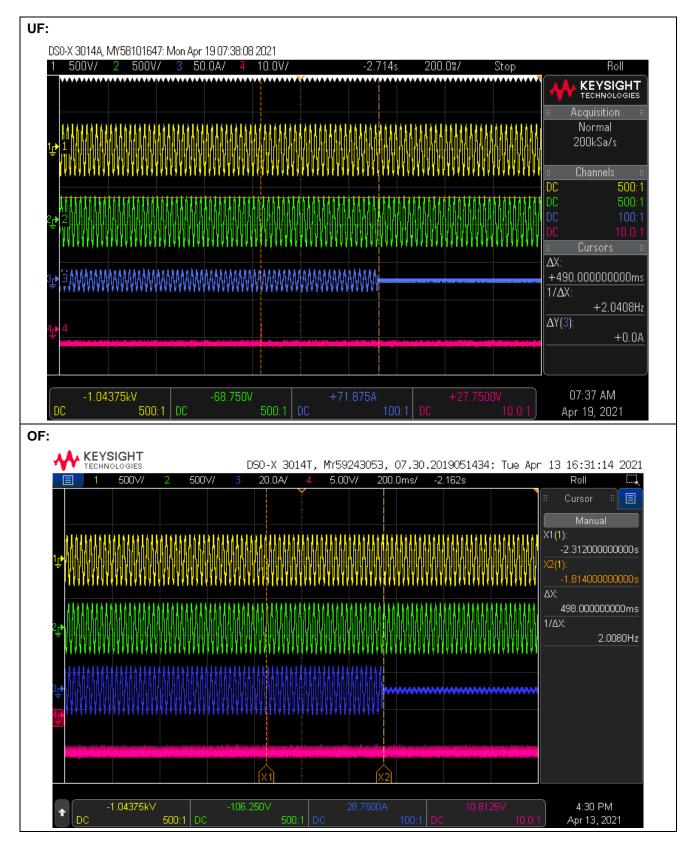
Page 88 of 111

Page 89 of 111

4.8	TABLE	: DC inje	ection								Р		
Model	SOFAR	SOFAR 12KTLX-G3											
						Powe	r level						
		20% 50% 75% 100%											
	Phase A											Phase C	
DC current [A]	0.0121	0.0117	0.0127	0.0108	0.0125	0.0123	0.0133	0.0150	0.0106	0.0145	0.0227	0.0083	
% of nominal current	0.0696	0.0696 0.0673 0.0730 0.0621 0.0719 0.0707 0.0765 0.0863 0.0610 0.0834 0.1305 0.0475									0.0477		
Limit		0.5% 0.5% 0.5%											


intertek Total Quality. Assured.

Page 90 of 111


4.9.3	Table: Inte	rface protec	tion			-
	(Settings for	or Ireland)				Р
UV						
Parameter	Settings	Test 1	Test 2	Test 3	Limits	
Trip value L1[V]	207	206.52	206.50	206.47	207±2.3	
Trip time [s]	0.5s	0.484	0.482	0.480	±10%	
Trip value L2[V]	207	206.46	206.48	206.39	207±2.3	
Trip time [s]	0.5s	0.480	0.478	0.482	±10%	
Trip value L3[V]	207	206.37	206.36	206.36	207±2.3	
Trip time [s]	0.5s	0.480	0.488	0.476	±10%	
ov						
Parameter	Settings	Test 1	Test 2	Test 3	Limits	
Trip value L1[V]	253	253.56	253.60	253.64	253±2.3	
Trip time [s]	0.5s	0.480	0.484	0.484	±10%	
Trip value L2[V]	253	253.57	253.57	253.54	253±2.3	
Trip time [s]	0.5s	0.478	0.488	0.482	±10%	
Trip value L3[V]	253	253.44	253.48	253.43	253±2.3	
Trip time [s]	0.5s	0.480	0.490	0.488	±10%	
UF						
Parameter	Settings	Test 1	Test 2	Test 3	Limits	
Trip value [Hz]	48.0	47.99	47.99	47.99	48±0.05	
Trip time [s]	0.5s	0.480	0.478	0.490	±10%	
OF						
Parameter	Settings	Test 1	Test 2	Test 3	Limits	
Trip value [Hz]	50.5	50.5	50.5	50.5	50.5±0.05	
Trip time [s]	0.5s	0.484	0.488	0.498	±10%	

Page 91 of 111

Page 92 of 111

Total Quality. Assured.

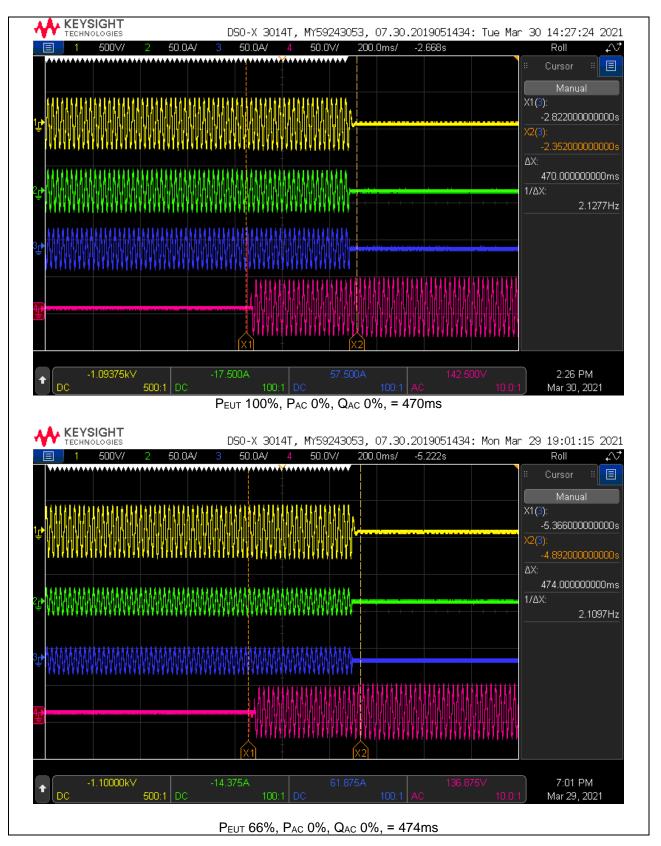
Page 93 of 111

Report no. 210416108GZU-004

4.9.4.2	2	Table: Islar	nding								Ρ	
No.	PEUT ¹⁾ (% of EUT rating)	load (%	PAC ²⁾ (% of nominal)	QAC ³⁾ (% of nominal)	Run on time (ms)	PEUT (KW)	Actual Qf	VDC	F	tema	arks	4)
1	100	100	0	0	470	12.102	1.01	800	Test	Α	at	BL
2	66	66	0	0	474	7.928	1.02	560	Test	В	at	BL
3	33	33	0	0	496	3.963	1.01	230	Test	С	at	BL
4	100	100	-5	-5	422	12.072	1.03	800	Test	Α	at	IB
5	100	100	-5	0	442	12.094	1.02	800	Test	Α	at	IB
6	100	100	-5	5	428	12.105	1.01	800	Test	Α	at	IB
7	100	100	0	-5	434	12.085	0.98	800	Test	Α	at	IB
8	100	100	0	5	454	12.048	1.03	800	Test	Α	at	IB
9	100	100	5	-5	420	12.024	0.98	800	Test	Α	at	IB
10	100	100	5	0	452	12.066	1.03	800	Test	Α	at	IB
11	100	100	5	5	416	12.046	0.99	800	Test	Α	at	IB
12	66	66	0	-5	428	7.915	0.98	560	Test	В	at	IB
13	66	66	0	-4	434	7.911	0.98	560	Test	В	at	IB
14	66	66	0	-3	432	7.925	0.99	560	Test	В	at	IB
15	66	66	0	-2	438	7.957	0.99	560	Test	В	at	IB
16	66	66	0	-1	444	7.956	0.99	560	Test	В	at	IB
17	66	66	0	1	426	7.926	1.01	560	Test	В	at	IB
18	66	66	0	2	424	7.917	1.01	560	Test	В	at	IB
19	66	66	0	3	412	7.918	1.02	560	Test	В	at	IB
20	66	66	0	4	422	7.909	1.02	560	Test	В	at	IB
21	66	66	0	5	398	7.919	1.03	560	Test	В	at	IB
22	33	33	0	-5	454	3.921	0.98	230	Test	С	at	IB
23	33	33	0	-4	458	3.904	0.98	230	Test	С	at	IB
24	33	33	0	-3	442	3.932	0.99	230	Test	С	at	IB
25	33	33	0	-2	468	3.935	0.99	230	Test	С	at	IB
26	33	33	0	-1	484	3.927	0.99	230	Test	С	at	IB
27	33	33	0	1	476	3.906	1.01	230	Test	С	at	IB
28	33	33	0	2	436	3.926	1.01	230	Test	С	at	IB
29	33	33	0	3	480	3.925	1.02	230	Test	С	at	IB
30	33	33	0	4	460	3.919	1.02	230	Test	С	at	IB
31	33	33	0	5	396	3.926	1.03	230	Test	С	at	IB

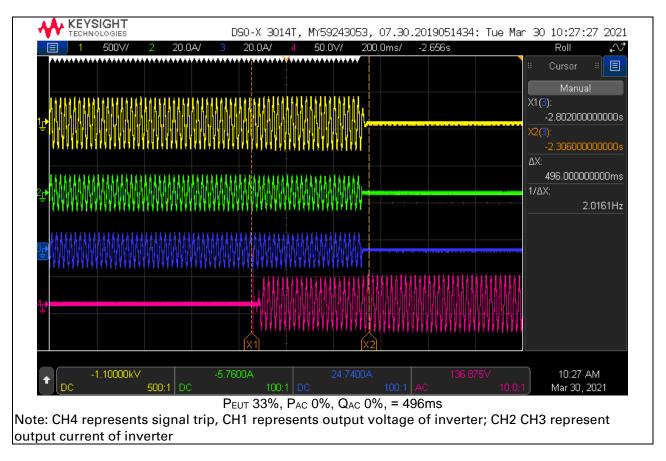
Remark:

¹⁾ PEUT: EUT output power


²⁾ PAC: Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0% test condition value.

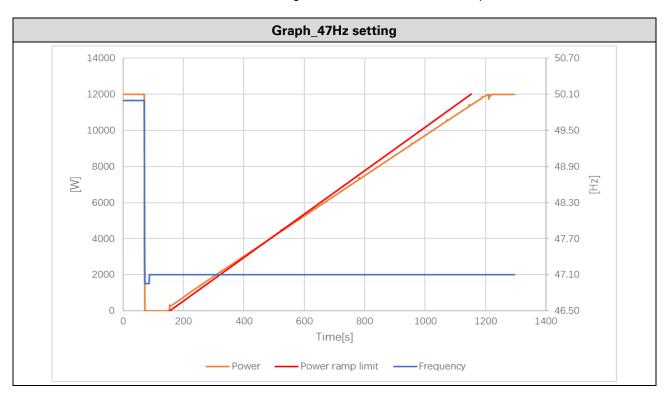
³⁾ QAC: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0% test condition value.

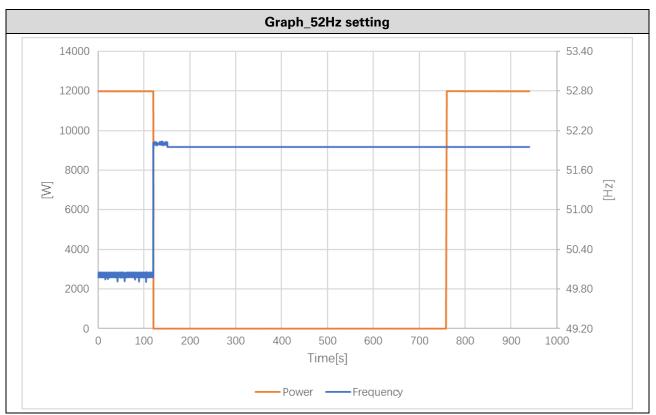
⁴⁾ BL: Balance condition, IB: Imbalance condition.


⁵⁾ *Note: test condition A (100%): If any of the recorded run-on times are longer than the one recorded for the rated balance condition, i.e. test procedure 6.1 f), then the non-shaded parameter combinations (no.32~47) also require testing.

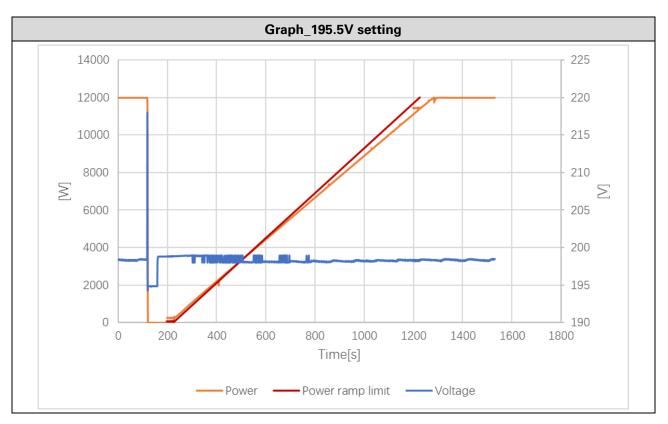
intertek Total Quality. Assured.

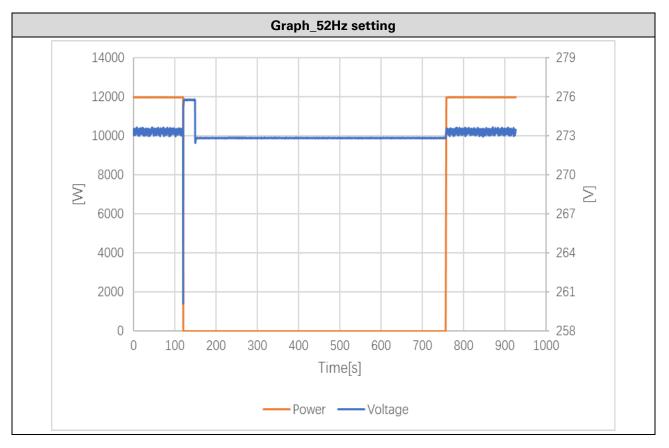
Page 95 of 111


Total Quality. Assured.

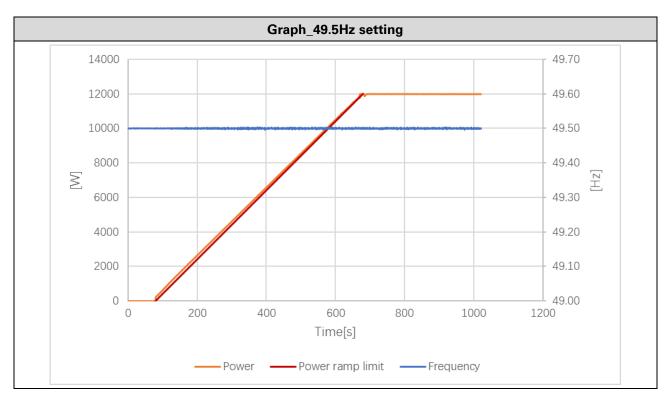

Page 96 of 111

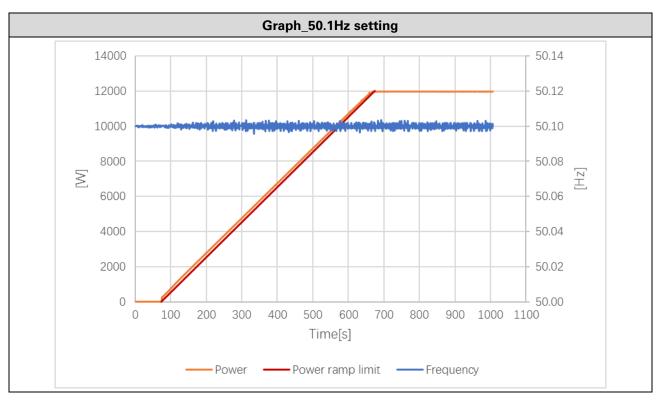
10.2	Table:	Reconnection	after t	ripping		Р		
		Table 3 —	Auton	natic reconnection	after tripping			
Paramet	er		Rang	je	Default settin	g		
Lower fre	equency		47,0ŀ	Hz – 50,0Hz	49,5Hz	49,5Hz		
Upper fre	equency		50,0ŀ	Hz – 52,0Hz	50,2Hz			
Lower vo	oltage		50%	– 100%Un	85 % Un			
Upper vo	Jpper voltage			6 – 120% Un	110 % Un			
Observation time			10s -	- 600s	60s			
Active power increase gradient			6% –	- 3000%/min	10%/min			
Test sequ after t		connectio	on	connection allowed	Observation time (s)	Power gradient after connection		
Step	a)	47.0Hz – 50 adjustabl <47.0Hz set	e	No				
		47.0Hz – 50	017		60s setting	6%Pn/min settir		
Step	b)	≥47.0Hz set		Yes	Measured: 66s	Measured:5.73 Pn/min		
Step	c)	50.0Hz – 52 adjustabl >52.0Hz set	e	No				
Step	d)	50.0Hz – 52 adjustabi ≤52.0Hz set	le ting	Yes	600s setting Measured:605.6s	3000%Pn/min setting Measured:300 %Pn/min		
Step	e)	115V – 23 adjustab <195.5V set	e	No				
		115V – 23			60s setting	6%Pn/min settir		
Step	f)	adjustabl ≥195.5V set	ting	Yes	Measured:67s	Measured:5.81 Pn/min		
Step	g)	230V – 27 adjustabl >276V sett	le	No				
Step	h)	230V – 27 adjustabl	6V le	Yes	600s setting Measured:606.8s	3000%Pn/min setting Measured:3000		
		≤276V sett	ing			%Pn/min		


Page 97 of 111

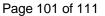


Page 98 of 111

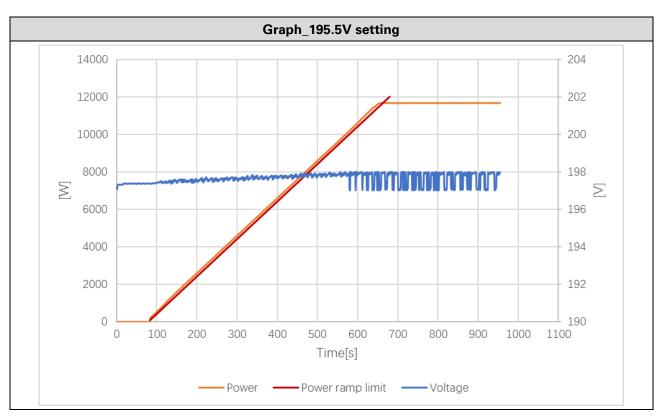

Total Quality. Assured.


Page 99 of 111

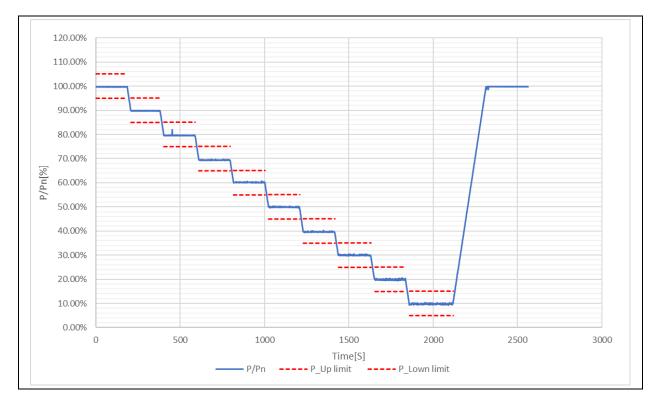
10.3	Table:	Starting to ge	nerate	electrical power		Р
		Table 4 —	Starti	ng to generate elec	trical power	
Paramet	er		Rang	e	Default settin	g
Lower fre	equency		47,0H	łz – 50,0Hz	49,5Hz	
Upper fre	equency		50,0H	lz – 52,0Hz	50,1Hz	
Lower vo	ltage		50% ·	– 100% Un	85 % Un	
Upper vo	ltage		100%	₀ – 120% Un	110 % Un	
Observat	tion time		10s –	600s	60s	
Active power increase gradient		6% –	3000%/min	disabled		
Test sequence after trip		on	connection allowed	Observation time (s)	Power gradient after connection	
Step	a)	47.0Hz – 50 adjustab <49.5Hz se	le	No		
Step	<pre><49.: Step b) 47.0F ≥49.5</pre>		.0Hz	Yes	60s setting Measured: 78.0s	10%Pn/min setting Measured:9.98' Pn/min
Step	c)	50.0Hz – 52 adjustab >50.1Hz set	le	No		
Step	d)	50.0Hz – 52 adjustab ≤50.1Hz se	.0Hz le tting	Yes	60s setting Measured:73.0s	10%Pn/min setting Measured:9.99 Pn/min
Step	e)	115V – 23 adjustab <195.5V set	le	No		
Step	f)	115V – 23 adjustab ≥195.5V set	le	Yes	60s setting Measured:82.0s	10%Pn/min setting Measured:9.99 Pn/min
Step	g)	230V – 27 adjustab >253V sett	le	No		
Step	h)	230V – 27 adjustab ≤253V sett	6V le	Yes	60s setting Measured:82.0s	10%Pn/min setting Measured:9.999 Pn/min



Page 100 of 111



Report no. 210416108GZU-004



TRF No. EN 50549-1a

Total Quality. Assured.

Page 102 of 111

4.11			ble: Active p ogic interface		ction by s	etpoint and	Cea	asing active	powe	r	Р
String	1		U _{DC} =		800 Vdc	Uac = Un		230 Vac	PEmax	(KW)	12.0
	1 mir	n me	an value P/F	'n	Pmeasured (%)			△Pmeasured (%)			Limit
	Psetpoint (%)										[%]
	100%					9.86		-0.14			±5%
			90%		8	9.87		-0.13			\pm 5%
			80%		7	9.66		-0.34			\pm 5%
			70%		69.45			-0.55			\pm 5%
			60%		60.22			0.22			\pm 5%
			50%		50.00			0.00			\pm 5%
			40%		3	9.70	-0.30			±5%	
			30%		3	0.06	0.06			±5%	
			20%		1	9.98		-0.02		±5%	
	10%				ę	9.84		-0.16		±5%	
	100%					9.86		-0.14		±5%	
The pov	ver gra	adier	nt for increas	ing and red	lucing (%	P _n /s)				0.	44%Pn/s
Time for	· Logic	; inte	erface (at inp	ut port) acti	vated						0.259s

intertek Total Quality. Assured.

Page 103 of 111

4.13		TAE	BLE: Sing	le fault tolera	nce					Р
		amb	pient tempe	erature (°C) :				25		
		mod	del/type of	power supply	:			PV S	Simulator	
No.	compon No.		fault	test voltage (V)	test time	fuse No.	fuse cu (A)		result	
1.	HCT3 pin11-12	2	S-C	850	1 min				Normal operation.	
0	HCT1	2	S-C	850	1				No hazard, no damage LCD displays 'HwPVO	
2.	pin3-4		5-0	000	1 min				Recoverable.	
	D4			850					No hazard, no damage	
3.	D1		S-C	000	1 min				Recoverable.	
									No hazard, no damage	d.
4.	HCT9		S-C	850	1 min				Normal operation.	
	pin15-12	2							No hazard, no damage	
5.	Q4		S-C	850	1 min				LCD displays 'HwPVO Recoverable.	CP'
									No hazard, no damage	d
6.	CTF4		S-C	850	1 min				LCD displays "VbusRmsUnbalance". Recoverable.	
									No hazard, no damage	d.
7.	Q1		S-C	850	1 min				LCD displays "VbusRmsUnbalance". Recoverable.	
									No hazard, no damage	d.
8.	Q5		S-C	850	1 min				LCD displays "VbusRmsUnbalance". Recoverable.	
									No hazard, no damage	d.
9.	Q7		S-C	850	1 min				LCD displays "VbusRmsUnbalance". Recoverable.	
									No hazard, no damage	d.
10.	Q3		S-C	850	1 min				LCD displays "VbusRmsUnbalance". Recoverable.	
									No hazard, no damage	d.
11.	RL1		Short before	850	1 min				Relay checking fail displays 'RelayTestFai	,
			start						No hazard, no damage	d.
12.	RL2		Short before	850	1 min				Relay checking fail displays 'RelayTestFai	
			start						No hazard, no damage	
13.	RL3		Short before start	850	1 min				Relay checking fail displays 'RelayTestFai No hazard, no damage	

Total Quality. Assured.

Page 104 of 111

14.	RL4	Short before	850	1 min		 Relay checking fail displays 'RelayTestFail'.
		start				No hazard, no damaged.
15.	RL5	Short before	850	1 min		 Relay checking fail displays 'RelayTestFail'.
		start				No hazard, no damaged.
16.	RL6	Short before	850	1 min		 Relay checking fail displays 'RelayTestFail'.
		start				No hazard, no damaged.
17.	U1 pin2- 3	S-C	850	1 min	-	 PCE Shutdown, LCD displays 'HwACOCP'. Recoverable.
						No hazard, no damaged.
18.	U3 pin2- 3	S-C	850	1 min		 PCE Shutdown, LCD displays 'HwACOCP'. Recoverable.
						No hazard, no damaged.
19.	U4 pin2- 3	S-C	850	1 min		 PCE Shutdown, LCD displays 'HwACOCP'. Recoverable.
						No hazard, no damaged.
20.	R168	0-C	850	1 min		 PCE Shutdown, LCD displays 'IsoFault'. Recoverable.
						No hazard, no damaged.
21.	R198	0-C	850	1 min		 PCE Shutdown, LCD displays 'IsoFault'. Recoverable.
						No hazard, no damaged.
22.	Q19	S-C	850	1 min		 PCE Shutdown, LCD displays 'IsoFault'. Recoverable.
						No hazard, no damaged.
23.	Q20	S-C	850	1 min		 PCE Shutdown, LCD displays 'IsoFault'. Recoverable.
						No hazard, no damaged.
24.	Q21	S-C	850	1 min		 PCE Shutdown, Auxiliary source hiccup protections.
						No hazard, no damaged.
25.	Q25	S-C	850	1 min		 PCE Shutdown, Auxiliary source hiccup protections.
						No hazard, no damaged.
26.	EC3	S-C	850	1 min		 PCE Shutdown, Auxiliary source hiccup protections.
						No hazard, no damaged.
27.	CAE1	S-C	850	1 min		 PCE Shutdown, Auxiliary source hiccup protections.
1						No hazard, no damaged.

Page 105 of 111

28.	CAE3	S-C	850	1 min	 	PCE Shutdown, Auxiliary source hiccup protections.
						No hazard, no damaged.
29.	CAE19	S-C	850	1 min	 	PCE Shutdown, Auxiliary source hiccup protections.
						No hazard, no damaged.
30.	EC1	S-C	850	1 min	 	PCE Shutdown, Auxiliary source hiccup protections.
						No hazard, no damaged.
31.	U5 pin3-4	S-C	850	1 min	 	PCE Shutdown, Auxiliary source hiccup protections.
						No hazard, no damaged.
32.	Q40 pin3-2	S-C	850	1 min	 	PCE Shutdown, LCD displays 'GFCIDeviceFault'. Recoverable.
	0000					No hazard, no damaged. PCE Shutdown, LCD
33.	C280	S-C	850	1 min	 	displays 'GFCIDeviceFault'. Recoverable. No hazard, no damaged.
34.	C281	S-C	850	1 min		PCE Shutdown, Auxiliary source
54.	0201	3-0	850	1 11111	 	hiccup protections. No hazard, no damaged.
35.	Q41 pin c-	S-C	850	1 min	 	PCE Shutdown, LCD displays 'GFCIDeviceFault'.
	e					Recoverable.
	0.40					No hazard, no damaged. PCE Shutdown, LCD
36.	Q40 pin 2- 3	S-C	850	1 min	 	displays 'GFCIDeviceFault'. Recoverable.
						No hazard, no damaged.
37.	Q48 pin D-	S-C	850	1 min	 	Relay checking fail
57.	S	00	000	1 11111	 	displays 'RelayTestFail'.
						No hazard, no damaged.
38.	Q49 pin D-	S-C	850	1 min	 	Relay checking fail
	S					displays 'RelayTestFail'. No hazard, no damaged.
20	R816	0-C	050	1 min		MPPT1 operation failure,
39.	ROTO	0-0	850	1 min	 	MPPT2 normal operation
						Power derating
						No hazard, no damaged.
40.	R817	0-C	850	1 min	 	MPPT1 operation failure,
						MPPT2 normal operation
						Power derating
						No hazard, no damaged.
41.	R818	0-C	850	1 min	 	MPPT1 operation failure, MPPT2 normal operation
						Power derating
						No hazard, no damaged.
42.	R819	0-C	850	1 min	 	MPPT1 operation failure,
<i></i> +∠.		00	000		 	MPPT2 normal operation
						Power derating
						No hazard, no damaged.

Page 106 of 111

	D- 46					DOE Shutdown I OD
43.	R548	0-C	850	1 min	 	PCE Shutdown, LCD
						displays 'VbusRmsUnbalance'. Recoverable.
						No hazard, no damaged.
44.	R553	0-C	850	1 min	 	PCE Shutdown, LCD
						displays 'VbusRmsUnbalance'.
						Recoverable.
						No hazard, no damaged.
45.	R558	0-C	850	1 min	 	PCE Shutdown, LCD
						displays 'VbusRmsUnbalance'.
						Recoverable.
						No hazard, no damaged.
46.	R563	0-C	850	1 min	 	PCE Shutdown, LCD
						displays 'VbusRmsUnbalance'.
						Recoverable.
						No hazard, no damaged.
47.	R568	0-C	850	1 min	 	PCE Shutdown, LCD
47.		00	000	1 111111	 	displays 'GridUVP'.
						Recoverable.
						No hazard, no damaged.
40	R573	0-C	050	4		PCE Shutdown, LCD
48.	N373	0-0	850	1 min	 	displays 'GridUVP'.
						Recoverable.
						No hazard, no damaged.
	D.570					PCE Shutdown, LCD
49.	R578	0-C	850	1 min	 	
						displays 'GridUVP'. Recoverable.
						No hazard, no damaged.
50.	R583	0-C	850	1 min	 	PCE Shutdown, LCD
						displays 'GridUVP'.
						Recoverable.
						No hazard, no damaged.
51.	R589	0-C	850	1 min	 	PCE Shutdown, LCD
						displays 'GridUVP'.
						Recoverable.
						No hazard, no damaged.
52.	R548	0-C	850	1 min	 	PCE Shutdown, LCD
						displays 'GridUVP'.
						Recoverable.
						No hazard, no damaged.
53.	R595	0-C	850	1 min	 	PCE Shutdown, LCD
00.			000			displays 'GridUVP'.
						Recoverable.
						No hazard, no damaged.
E A	R601	0-C	850	1 min		PCE Shutdown, LCD
54.	1001	0-0	000	1 min	 	displays 'GridUVP'.
						Recoverable.
						No hazard, no damaged.
	DC07		050			PCE Shutdown, LCD
55.	R607	0-C	850	1 min	 	displays 'GridUVP'.
						Recoverable.
	+		+			No hazard, no damaged.
56.	R613	0-C	850	1 min	 	PCE Shutdown, LCD
1						displays 'GridUVP'.
						Recoverable.
						No hazard, no damaged.

Page 107 of 111

57.	R621	0-C	850	1 min			PCE Shutdown, LCD displays 'IsoFault'. Recoverable.			
							No hazard, no damaged.			
58.	R800	0-C	850	1 min			PCE Shutdown, LCD displays 'IsoFault'. Recoverable. No hazard, no damaged.			
Supplement:										
s-c: s	s-c: short-circuited, o-c: open-circuited, o-l: overload									

Page 108 of 111

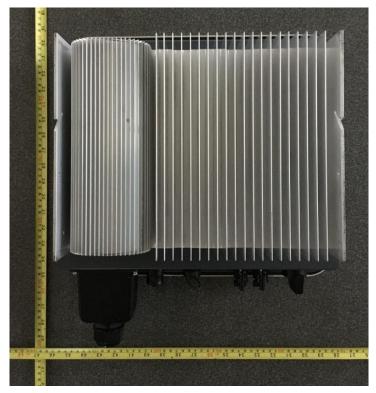
Report no. 210416108GZU-004

Appended photos

Overview

View of terminal

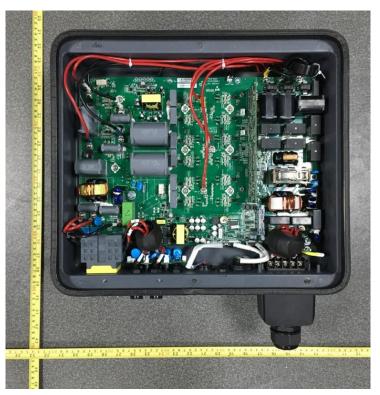
(for models SOFAR 3.3KTLX-G3 , SOFAR 4.4KTLX-G3 , SOFAR 5KTLX-G3-A , SOFAR 5.5KTLX-G3 , SOFAR 6.6KTLX-G3 , SOFAR 8.8KTLX-G3 , SOFAR 11KTLX-G3)


Page 109 of 111

Report no. 210416108GZU-004

View of terminal

(for models SOFAR 8.8KTLX-G3-A , SOFAR 10KTLX-G3-A , SOFAR 11KTLX-G3-A , SOFAR 12KTLX-G3)



Bottom view

Page 110 of 111

Report no. 210416108GZU-004

Internal view

(for models SOFAR 3.3KTLX-G3 , SOFAR 4.4KTLX-G3 , SOFAR 5KTLX-G3-A , SOFAR 5.5KTLX-G3 , SOFAR 6.6KTLX-G3)

(for models SOFAR 8.8KTLX-G3 , SOFAR 11KTLX-G3 , SOFAR 8.8KTLX-G3-A , SOFAR 10KTLX-G3-A , SOFAR 11KTLX-G3-A , SOFAR 12KTLX-G3)

Page 111 of 111

Report no. 210416108GZU-004

Earthing view

(End of Report)